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ABSTRACT

~—

A computer processing technique is advacced which seeks
to retain }r improve data information context while reducing
the dimensionality of data representation. Tefining
information context as the relative proximity of data
points, a nonlinear transformation is analytically derived
which utilizes Euclidearn distance to one or more reference
points to provide a measure of similarity DVetween data
poirts. The nomarbitrary reference points are selectively
manipulated to provide, given certain contraints, a unique
mapping from high dimensional space to one or more
dimensions for each point in space. The <transformation
process enhances class clustering and interclass separation
in the lower dimensional representation.

Computer processed experimental results are presented of
reduction from 32, 13, and 3 space into 2 space for bdoth
synthetic and real yorld data. Utilizing & ratio of
intraclass variance to 1interclass varlance as a figure of
merit and as one possidle optimization criterion, this
technique ylelded a significant ratio improvement irn mapping

from higher dimensional space into 2 dimensional space for

all cases examined,
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I. INTRODUCTION

“"In the widest sense, patterns are the means by which we
interpret the world.

WILLIAM S. MIESEL

Data becomes meaningful information when it provides a
perspective on known information. In its most general semse,
the context of unknown information 1is judged Dby its
relationship to known information. The most numerous pattern
recognition mechanism on the planet Tarth, man, primarily
judges the meaning of new information on his past
experiences. He interprets his senses relative to his
personal environment and experiences. However, the methods
by which man preceives nrew experliences relative to past
experiences 1s not yet fully understood.

Mathematical pattern recognition, using digital
computers, attempts to emulate the human’s skill at pattern
recognition, albeit poorly, by relating new 1information to
its own data base of accumulated irformation. The computer
has the advantage of performing vattern recognition in high

dimensional spaces, spaces incomprehensible to man.

A. MOTIVATION

Patterr recognition represents information as numerical

11




values. In supervi.sed learning, nurerical representations of
known objects are compared agairst numerical representations
of unknown obdjects in an attempt to recognize the unknown
object. The complexity of analysis rapidly increases as more
and more measures of an object are collected. Each measure
is, in numerical form, a descriptor of some attridute of an
item, Ye it a physical odject, an event in time, or some
metaphysical relationship. The numder of measures of a item
of data define the number of dimensions in space in which
the item exists. A sample of ar object is defined to bde ore
set of measurements of that object. ’The complexity of
evaluatineg the meaning or identity of ar sample 1increases
exponentially as the numbdber of dimensions in which the
object is described. The fact that procedures which are
analytically or computationally manageable in low dimensions
become completely impractical with high dimensional
representations is termed within the pattern recognition
literature as the "curse of dimersionality”[1,2,3].

The significance of information is not in 1its
representation dbut in 1its context. In classifyirg data
relative to Y¥Xnown information the concern is recognition,
not representation. The premise of this research is that a
transformation exist which will overcome, to some extent,
the curse of dimensionality by reducircg informatior
representation while retaining context. Vieved

geometrically, this transformation will attempt to retain or

12
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enhance relative proximity of similiar 1information and
separate the relative proximity between iifferent
information sources while reducing the number of dimensions

in the representation.

B. A RELATIVE PROXIMITY SCENARIO

Consider the problem of an aircraft navigator equipped
with a range only measuring device. The navigator knows the
general location of his aircraft but would like to precisely
fix his positiorn. In doing so, he measures the distance to
two landmarks conveniently available to him as 1in figure
1.1. He then «circumscrides a cirle around each of the
landmarks ,each with a radius equal to the distarnce from the
aircraft to that lardmark. Unless he is exactly on the 1line
drawn between the two references points the circles drawn
will 1ntersect at two polints. By knowing his general
position, that s, by knowing the aircraft’s position
relative to that 1line, the nagivator can resolve the
amdiguity and select the correct intersectiorn as his
position.

This example, greatly generalized and viewed from the
perspective of the landmarks rather than the navigator, is
the transformation developed in thls thesis to reduce
representation while retaining relative proximity of

similiar information.

13
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Figure 1.1

Aircraft position determined relative to two

reference points.
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C. SCOPE

The generalized pattern recognition process is describded
to provide insight 1into the role of dimensiorality
reduction. Next the nonlinear ¢transformation employed to
reduce data representation is aralytically derived. This 1is
followved by geometric 1illustrations of the Tramsformation
and a rationalizatior of its effects om class clustering.
Results of specific test cases are described and graphically
illustrated. The final chapter provides conclusions,
recommendations for applications, and further research areas

in this methodology.

15




I1. THE PATTERN RECOGNITION PROCESS

A. NATURE OF THE PROCESS

"Pattern classification is the assignment of a physical

object or event to one of several prespecified catagories

"[1]. The act of making that assignment can be characterized

by three sequential logical component processes as shown in
flgure 2.1. Ir the first process, the physical world {is
sensed by some transducer system which transforms data into
a machine processible state. The transducer changes the
physical reality of an object, characterized as a continuum
of parameters and infinite i{in dimensionality, into a pattern
space whose domain 1is defined by the discretizatior of
sensor data observed in the real world. This discrete set of
measurements finitely dounds the range of values and rumbder
of dimensfons which characterize the object. Feature space
is an intermediate domain Dbetween pattern space and
classification space. There may be one or more subprocesses
required in transforming patterc space into feature space.
This transformation into feature space 1is the process,
termed feature selection, preprocessirg, or feature
extraction, by which a sample representation 1in pattern
space s descrided bdy a finite and usually smaller sample

representation called features, Feature space is a reduced




PRYSICAL WORLD

TRANSDUCERS

PATTERN SPACE J\/]

DIMENSIONALITY
REDUCTION

FEATURE SPACE 1\/1

DECISION ALGORITHM

Y

CLASSIFICATION SPACE

FIGURE 2.1 The pattern recognition process

o v




representation which attempts to retain as much

discriminating power as possidle while removing as much
redundancy as possidle. The transformation from feature
space to classification space is accomplished via a set of
decision rules which classify an unlabeled (unknown) sample
of an odbject as a member of one of the known data sets. The
classification probdblem is basically one of partitioning the
feature space into regions, one region for each category.
The view of pattern recognition as a series of processes was
provided by H. C. Andrews[3]. Meisel (2] views pattera
recognition as a series of states in which the data exist.

The two perspectives are logically equivalent.

B. DIMENSIONALITY REDUCTION

In descriding the dimensionality reduction inherent in

feature extractior Duda and Hart comment :

There 1s a growing Yody of theory of dimensionality
reduction <for pattern classification. Some of these
methods seek to form new features out of linear
combinations of o0ld ones. Others seek merely a small
subset of the original features. A major problem
confronting this theory is that the division of pattern
recognition into feature extraction folloved by
classification is theoretically artificlal. A completely
optimal feature extractor can never be anything but an
optimal classifier.[1]

Andrews states :

¥hile the objective in defining the feature space is to
reduce the dimensionality of the pattern space yet

18
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maintaining discriminatory opowver for classifiction
purposes, successful transformations still seem in their
infancy. There exist a variety of linear transformatiors
as well as some nonlinear methods which are developing
particular appeal dut the real frontiers of pattern
recognition still 1lie ahead in developing a viabdle
feature selection transformation that und oes the
redundant data gathering lnherent in the definition of
pattern space. [3]

The variety of feature extraction techniques are too
numerous to mention 1individually, dut can be discussed as
families of methodologies. Principal component analysis
techniques attempt to maintalin discrimination while reducirg

the dimensionality of data representation by selecting a

subset of measurements from pattera space which contain the

most variabdility. The obdjective of factor analysis is to

find a lowver dimensional representation that accounts for
the correlations among the features. The multidimensiornal
scaling techantque reduces the dimensionality while
attempting to maintain the distance relationships detween
all points in pattern space in feature space. This feature
extractor 1iteratively processes the data until a minimum |
error exists in the feature space representation of pattere
space distance relationships. Classical discririnant
analysis attempts to find a 1lover dimersiornal surface on T

which to project the data samples and achieve good

separation bdetween classes., In each case the methodologies f

{incur some lo0ss of information in feature extraction.

The intrinsic meaning of the data points, not their

19
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representation, is their single most important property. An
optimal feature extractor must not lose context while
reducing data representation. Certainily, any feature
extractor vwhich reduces the context while reducing the
representation is suboptimal. Yet the term feature extractor
itself implies retaining some information while discarding
some information. Perhaps a change of perspective 1s
required to detter reduce data representations. Consider a
method of representing in a lowver dimension the
relationships between data samples in pattern space rather
than the data itself. The relationships are the significant
factors, not the representations, for they define the
context of the information.

The relationships bvetween data poirts are typically
Judged in terms of distance measures. Meisel astutely noted
"distance is crucial in pattern recognition; 1t is assumed,
roughly, that the closer a point is te another npoint, the
more similar are the patterns represented bdy those
points™.[2] Multidimensional scaling capitalizes on this
fact dy attemptirg to retain pattern space distance
relationships in feature space. Yet 1t faills to do so
completely since the distance relationships bdetween all
points can not be explicitly retaired in any less than the
numder of pattern space dimensions unless the points exist
in a sudspace within the pattern space.

Again recall that the significant factor is context, not

20
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representation. Taking the liderty of paraphasing Meisel’s

words, the greater the relative proximity of one point to
another point, the greater the similarity of ¢the patterns
represented by those points. If, in reducing the data
representation dimensionality, the relative proxirmity of
similar information 1is maintained then it seems intiutive
that 1little 1loss of context has occured in the
transformation. Multidimensional scaling severly comstralnts
itself bdy attemptirng to maintain distance relationships in
lover dimensions. The transformation rpresented here will
forego maintaining distance relationships bvetween all points

in 1lieu of maintaining relative proximity betweer similar

data points. '

C. GENERAL APPROACE TO A RELATIVE PROXIMITY TRANSFORMATION

In developing this nonlinear transforrmation use is made

of two axioms :

1. the distance between two points in n dimensional space

is a scalar value;

2. an r dimensional lattice space s relatively sparse

compared to n dimensional comtinuous space.

These facts are of vital signifinance in the adility to
reduce representation without loss of context.

The distance from one ©point to another point 1s a

21




measure of the relative proximity of the polnts. In one
dimension, the similarity or lack of similarity ir distance
from a reference point to all other points in effect defines
each point’s relative proximity to omne another. By
generalizing td n dimensions and constraining the data svace
to remove ambiguity, the context of points in n dimensioans
may be measured by their similarity in distance to one or
more known reference points.

The selection of reference points will be based on a

f»
;
i
(
,s-

criterion of retaining, if not improving, relative rroximity
of similar representations, separating dissimilar
representations, and providing a unique mapping from n
dimensional pattern space to an m (m > 1) dirensional

feature space.

22
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III. N-DIMENSIONAL NONLINEAR TRANSFORMATIONS

————

This chapter considers the representation of known data
samples in pattern space. Their representations in pattern
space produce several constraints and assumptions about that
space which allow nonlinear transformations to reduce the
dimensionality of their representations. Ir subsequent
chapters it will ©be shown that the reduced representation
retains or, more likely, improves ary clustering presert in
samples of the same object. This 1implies that the
information context of the reduced representation 1is at
least maintained 1i1f not 4improved 1in the lower dimension
representation. The case of a two dimensional pattern space
to two dimensional distance space transform 1is first
developed, followed dy a three dirensional pattern space to
twvo dimensional distance space transformation. A discussion
of n dimensional to m dimensional ¢transforms corclude the

chapter.

A. DEFINITIONS

Let X, = (xli.xzi....xni) be the 1 th sample vector
in pattern space descriding an odject where :
x (J =1,n) 1is a real number;

n is the fircite number of dimensions ir

23
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the sample vector.
Let Di = (dli'dZi”°°’dmi) be the ordered representation of
the 1 th sample in distance spacel where :
m is the finite number of dimensions 1in

the distacce vector.

x (k=1,m) 1is a real number
vhere (dk) is the Euclidear distarnce
from a designated reference point (Py)

to a sample point (Xi);

_The Euclidean distance (dk) is defined to have the following

properties for any three distinct points (xi.xj.;k) i #23:

a(xi,xy) [h§§xhi - xp5)211/2 a(x;,25) > @

d(xi,xi) 0 d(xj,xy ) = dlxy,3;)
d(xi.xj) + d(xj.xk) > d(xi.xk)
A nonlinear transformation (T) is defined such that
T: (X =-=-=>D )
1 1

B. TRANSFORMATION FROM TWO DIMENSIONAL PATTERN SPACE INTO
TWO DIMENSIONAL DISTANCE SPACE

In considering the two dimensional transformation (T)
recall the example of the navigator. In that situation, the

navigator knew the aircraft’s approximate position,

lThe term distance space 1s utilized in lieu of feature
space since the features are distances from reference points
rather than a sudbset of measurements from pattern space as
might be done , for example, in oprinctipal component
anaylsis.

24
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effectively limiting the area in which he could bde precisely
located. In the general case in two dimensions one method to
locate a point in space precisely is to constrain that point
to a certain reglon as in the case of the navigator. In
constraining a point to remove ambiguity two factors enter
into consideration. In supervised 1learning an attempt is
made to identify an object solely or its proximity to other
identified points. The range of values of the known objects
are precisely defined and the unknown sample values will be
approximately equal to the known values. Secondly, recall
that the navigator had to know his general position relative
to a line drawn between the two reference points to resolve
the ambigulity in choosine which of the two intersections was
his position. Knowing the approximate range of values allows
selection of a constant scaling factor which will scale all
points into nonnegative space. By scaling the data to bde
nonnegative most amdbiguity is removed as all intersections
occuring outside nonnegative space can de rejected, as in
figure 3.1a.

To remove any amdiguity caused by both intersections
occuring within the constrainted patterr space restrictions
are placed on reference points 31 and Rz. For comrputational
simplicity reference point one (Rl) is detiqed as the
origin. A valid reference point two (32) i1s defined such

that one and only one intersection will occur withir pattern

-
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Figure 3.la A two dimensional representation of a valid

reference polnt two.

original »~ 2P constrainted .
pattern pattern
space space

-

This reference point two is valid for this situation
in that only one point of intersection lies within 1

constrainted pattern snace. i

26
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spacez. The values of valid reference point twos (Rz) are
generally not ©bounded and are infirite in number even with
the uniqueness constraint. The distance from each reference
point to a point in the pattern space lattice defines the
radius of a circle. The intersection of the circles abdout
each of the reference ©points defines a point in space.
Figure 3.1a 1llustrates the case of a valid Rl and Rz. Note
that of the two intersections defined by the circles only
one exist in constralnted pattern space. Figure 3.1b
demonstrates an invalid R2 in that two Dpoints of
intersection exist in constrainted patteran space.

The two dimensional pattern space into two dimensional

distance space transformation may be stated in the following

manner :

Given a set of samples I, = (yli,yZi) , ( = 1,numbder of
samples)

in pattern space vhere

2 < yji + k < ai (J = 1'2)

aj; i1s the maximum value which the
i th element may assume;

k is a scale factor such that the
minimum value of Y51 + k>

2From this point forward in the discussion, the term pattern
space implies a nonnegative, maximally bdounded pattern
space,
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Figure 3.1lb A two dimensional representation of an

invalid reference point two.

A

d R2
2
constrainted d2
pattern
space

Anbiguity exists as there are two points of intersection

detined within constrainted pattern space.
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X

+ k

ji = Y34
X; = (xy;,%x5;),(1 = 1,number of samples)
1s the set of samples in
constrainted pattern space
there exist a set of samples D, = (d,;,d,.) in distance
space obtained through the nonlinear transformation
T: (X; —=>D;)
vhere
d4; = [ (xy5= r5) ? }/Z(J =1,2),(1 = 1,numder of
samples) is the Buclidean distance
function as defined adove (3.1}
R, = (2,9)
R, = ( p3sPp ) 1s a valid reference point.
A reference point two is valid for two space if and only if
there exist one and only one solution within pattern svace
to the simultareous equations defining (d;) ard (d,) for all

points in pattern space.

c. TRANSFORMATION FROM THREE DIMENSIONAL PATTERN SPACE
INTO TWO DIMENSIONAL DISTANCE SPACE

Observe in figure 3.2 the radii (d,,d;) computed as the
distance from a reference point to a sample point
geometrically describde spheres in three dimensions. The
intersection of the two spheres formed, respectively, of the

radil 4,,d, from R,,R, defines a circle in two dimensilons.
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The circle of intersection 4&
contains only one lattice
point of the constrainted
pattern space.

constrainted N
pattern \
space \

lattice

- e - -

circle of
tersection

&/fr - o > e s e e aw

R A

4

Figure 3.2 A three dimensional valid reference point

two.
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In continuous space all points on the circle of intersection

are equally defined dby the ordered vpair (d;,d2) in two

space. To remove this most uncomfortable amdiguity of an

infinite numder of points in pattern space mapping into one

point in distance space consider the following assumptions :

assumption 1 pattern space may be represented as a lattice
of discrete nonnegative, maximally Ddounded
points separated by a unit distance;}

assumption 2 the circle described by the 1intersection of
the spheres is constructed to contain one and
only one lattice point;

assumption 3 a valid reference point two (Bz) exist which
manipulates the circle of {intersection such
that assumption ¢two will be true for all lat-
tice points 1in the pattern space defined by
assumption one.

Assumption three is logically valid, provided
assumption one is true, if and only if there exist the

ordered pairs
Di = (dlidZi) and Dj = (dlj'de) for all X, Xj 1 #)

discrete sample points in three dimensional pattern space

wvhere
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Restating equation 3.2 such that when the <following
equivalent equations are both false for all points xi.xj (1
# J) in pattern space R, = ( p;sP,p3 ) is a valid reference
point.

2 2
@15 = a3y

2 2
dp; = dpy =

Expanding equation 3.4, 1in considering a three space into

two space transformation, ylelds :

2 2
(Xy =Ry "= (X5 -R, ) =0

Squaring and collecting terms results in :

2 2 2 2 2 2
Tip *Xpg * X3y T Xy T Xpy T X3y * 24P+ 2p4Pp ¢+

2x35P3 ~ 2Xy;P; < 2X;Pp < 2x3;p3 =0 {3.6}

Equation 3.1 allows substitution of Dli2 for (xli2 + xZi2 +

x3i2 ) and -Dljz = (-xljz -xzjz -x3j2 ) and utilizing vector




notation for B, xiz’s and sz' then

2 2
Dli - Dlj + 2R2 *» (XJ - Xi) = @ {3.7}

Equation 3.7 is the logical complement to equation 2.2 since
only wher the equality holds will a point R, = ( py,P,,P3 )
be invalid.

Assumption three, that a valid reference poirt two will
always exist when assumption one is true, can be proven in
the following manner. Two sets of constants are present in
eguation 3.7, the differences between the distance ones
squared and the differences Dbetween the data points in
), (1 # 3). Selectirg

]
the largest difference in magnitude3 between distance ones

pattern space for all poinmts (X, , X

squared and the minimum difference in magnitude between data
points (xi) and (xj) then a reference point two can easily
de selected such that the magnitude of the dot product of
the candidate refererce point two and the minimum difference
between data points (xi , xj) 1s always greater than the
maximum difference in magnitude detween distance ones
squared. Once the mipnimum reference point two 1s found then

3The minimum difference in magnitude s that difference
whose abdsolute value is closest to the origin. Conversely,
the maximum difference in magnitude is that difference whose
abdsolute value is most distant from the origin.
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every linear combdination of that point is a valid refererce
point. Furthermore, every point larger in value for the
maximum case and smaller in value for the negative case will
be valid except for the case p; = pj = Py in symmetric
pattern space.

Consider the example of a three dimensional pattern
space which is exhaustively defined for all linear
combinations of integer lattice points in the rarge of @ -
6. The magnitude of the maximum (D)% - D)%) 1s 108. The
minimum magnitude of the difference (xj - X;) is the point
(86,2,1). 1In accordance with equation 3.7, a reference point

two 1s easily found such that

2

max magnitude(D,;" - Dljz) < 2 (R, *(min magnitude(xj - X;)))

(2.8}

For this example,
198 < 2( R, * ( 0,0,1))
implies R, = (@,2,55)

In effect, assumption three states there will always
exist a unique mappineg from three space to one space for
discrete data.

¥hen equation 3.3 is considered in addition to equation
3.4 then another degree of freedom 15 present. The net
result of this combination 1is that valid reference point
twvos will exist inside the bdounds defined by considering

equation 3.4 alone. At present valid reference point tvwos
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inside the bdounds can only be determined by exhaustive

searches attempting to validate a candidate reference point

tvo with equation 3.7.

D. TRANSFORMATION FROM N DIMENSIONAL PATTERN SPACE INTO M
DIMENSIONAL DISTANCE SPACE

Generalizing figure 3.2 into n dimensional space, the
radius of intersection forms a (n - 1) dimensional
hypersurface in n space. All the constraints and assumptions
of the three space transform remain valid for the n
dimensional case. The derivation in the previous section
that a valid refererce point two always exist in three space
{s dut one case of the n dimensional argument. To extend the
proof to n space simply iccrease the indices of the vectors
to the desired value of n. There is no difficulty in mapoing
a (n =-1) dimersioral hypersphere defined by the radius of
intersection of m spheres into a single, unique point in m
space where m ranges from one to infinity.

The n dimensional tracrsformation may be stated as :
Given a set of sample data points Yi = (yli.yZi,...yni),(i =
1, number of samples) in pattern space vhere there exists a
set of poimts X, = (xli'xZi""'xni) , (1 = 1,numdber of

samples) wvhere X, is constralnted to be

1. nonnegative yji* k>0

Tyt Gtk




2. maximally bounded xjig a;

3. a member of the set of lattice xjie{P}
points with a unit separation P = {all lattice
between points poirts}

k 1s a constant scale factor such that all possible
points in data space are nonnegative values

a; 1s the maximum value a (xi) may assume

there exist a set of sample points D; = (d,;,d,;,...d ;) in

distance space

vhere

dpi =

unit

minimally bounded on the numerical precision of the
discretization process employed to transform vhysical 1

embodiment into machine representation.

E. SUMMARY

which provides a one-to-one mapping from n space to m space,

vhere typically (m<{n). The effects of this transform on the

While it has not ©been proven formally, the allowabdle

A

[Z(xji- R,) 2 /2 (y = 1,m) 1is the FTuclidean 4
distance

(0,0,...,0 )

(PP oppeesPpp (b =2,m) are defined by

equation 3.2

separation Dbdetween polnts 1is hypothesized to be

powerful nonlinear transformation has been developed
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information content and cluster formatior in the

representation are presented in the following chapters.
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Iv. TRANSFORMATION EFFECTS ON CLUSTERING

The number of valid refererce points (Rb) has been shown
to bde infinite. Implicit in this fact is the cholce of
transformations 1is also infinite. Gliver this infirite
selection of transformations the objective is to determine
the transform which provides the greatest degree of class
clustering and interclass separatior. Measures of
improvement are discussed as a means (o accomplish this
objective,

The conversion of pattern space into distance space 1is
presented geometrically to provide some 1insight into the

transformation process.

A. GEOMETRIC INTERPRETATION OF CLUSTER FORMATION
IN DISTANCE SPACE

The unique mapping from n space to two space is a
function of the (n - 1) space tangent hypersphere generated
d

by the intersection of the radii d Recall from figure

1" 2°
3.2 that the "direction” in which the tangent surface slices
through data space, the range of values for the curvature of
the surface of the tangential hypersurface over pattern
space and class sample point dispersion relative to that

"direction” shape the clustering and class separatior which
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occurs.,

The change in curvature of the surface of the targential
hypersphere 1s locally mirimal dut over the entire range of
the data space may be quite extreme, depending on the value
of reference point two. Points in relatively close proximity
will have approximately the same tangential curvature
(figure 4.1a). Points which are relatively distant and
clustered perpendicular to the tangent line will experience
a greater change in curvature between the points (figure
4.1b). Points relatively distant but havirg rearly the sare
tangent curve will map in close proximity in two dimensional
distance space (figure 4.1c). Poirts in relative proximity
to each other, {n the sense their tangent curves are in
relative oproximity, bdecome more tightly clustered in
distance space. The physical reality of this fact is that
the points in relative proximity to one another are nearly
equal in distance to reference point two.

The concept of relative proximity does not allow total
deinterleaving of sample points of different classes.
However, any class separation which does exist in any ore or
more dimensions in pattern space can be enhanced in distance
space with the correct cholce of reference point two. This
enhancement is especially noticable when distance squared
instead of distance is utilized to determine an element of
the m space vector since distance squared emphasizes the

maximum differences bYetween elements of the vectors (Xi -
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FPigure 4.la Similar tangent

arcs passing through a cluster.

PATTERN
SPACE

v/
/s

PATTERN
The curvature of the tangent SPACE

Figure 4.1b Variance in

curvature

arcs slicing through cluster A

is greater than that of the arcs

passing through cluster B.

[

Figure 4.1c Mapping effects on
different classes with similar
tangent arcs.
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B. MEASURES OF INFORMATION CONTEXT

One criterion for determining the degree of <class
clustering and 1interclass separation is to compare the
intraclass variability to tne interclass variability. Duda
and Hart [1] measure this variability 1in terms of the
scatter within classes (SW) and the scatter between classes
(SB). Their technique will bde wutilized in computing a
informatiorn context measure (Iq). the ratio of (SW/SB) it gq
dimensional space. This ratio is computed in the followling

manner.,:

A g dimensional sample mean vector for class i 1s computed

as
1
M, = win {4.1}
xe‘xi

where

Mi i1s the mean vector for class i

v, 1s the number of samples in class i

X; is a memder of the set of samples in class 1

The within class scatter (sw) is the sum of the within class

scatter for each class. The within <class scatter |is
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calculated as the distance squared from a class mean to all

points in that class.

I Me

(X - (R M) T {s.2}

w

=

"
S ™Ma

vhere
c is the number of classes
| i1s the class 1index
-— T -
(xi Mi) is the transpose of (X, - M;)
To calculate the scatter between classes (SB), the total

mean for all classes must dbe determined.

lc
i=1
vhere
v is the number of polnts in class i
"i is the mean vector for class |
2 is the sum of L for all classes

Then the scatter between classes (Sg) 1s

C

1=

The scatter within decreases as class clusterircg 1is

42
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improved. The scatter between 1increases as interclass
separation increases. The ratio (Iq) is computed to measure
the 1i{nteraction of ¢those two facts. Minimizing this ratio
when transforming the data samples from pattern space to
distance space 1s a measure of improvement contributed dy
the transformation. The term miminize 1s used in a relative
sense. The ratio (Iq) will approach zero as the separatior
between classes increases to 1infinity or the 1intraclass
scatter decreases to z2ro. Generally that degree of
separation will not be required. By providing a
geometrically comprehensiatle representation of n space data
in one, two, or three dimensions the user may de able to
discern a separation which is sufficient without a minimal
(Iq) ratio.

The (Iq) measure, when computed as (S,/Sy) is, in the
case of unimodal class distridutions, the sum of squared
error criterion. For multimodal class distridutions ard
other complex class distributions other optimality measures
will ©be more appropriate. Multimodal class distridution
difficulties can sometimes be overcome by - redefining
multimodal classes 1into separate classes and applying the
(Iq) measure, More complex problems such as dense clusters
inside a diffused cluster, for example a sphere within a
sphere or interlocking tori, will require different
information measuring criteria. These measures are typically

aprlication dependent. An example of a three dirensional
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cube within a cube is presented as a study of utilitizing

the (I_.) measure on complex problems in the following

q
chapter.

C. TRANSFORMATION EFFECTS OF ALTERNATIVE REFERENCE POINTS

The effect of passing the 1intersection of the two
hyperspheres through a pattern space might best be realized
in examiring a geometrically conceivable example. Corsider a
three dimensional set of integer points dounded on the
interval (@ - 6). This data set is kaown to contain two
classes separated by the plane x = y. The points x = y are
membders of neither known class. Figure 4.2 illustrates this
example. The (I3) ratio in three space for this data set was
computed to be 1.699991. An arditrarily selected refereznce
point two R, = (18,21,-1) ylelded a (I;) = 80.818992. As
shown in figure 4.3a this reference point generates a poor
mapping solution 1in terms of clustering since points from
distinctly separated classes map adjacent ¢to ome another,
Note in figure 4.3b that the poor solution was the result of
a reference point two which forced the tangential surface
directior to have relative proximity across classes. A
better choice of R, would force the intersection to be
pearly parallel to the known class separation. Figure 4¢.4a
shows the results of more carefully selected R, =

(-999,999,1). Here the (I,) ratio in two space was .200012.
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Figure 4.2 A bisected cube

I; = 1.699991
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Figure 4.3a A poor mapping solution to the bisected cube

Figure 4.3b A mapping solution

which forces the tangent curves

across clusters.
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Figure 4.4a A nearly optimalmapping solution

Figure 4.4b A mapping
solution which separates
classes and enhances class

clustering.
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Figure 4.4 is a presentation of this data ir two
dimensional distance space. This R2 point enhanced the
separation to the extent that ¢the means are spread must
further apart. The separation Dbetween <classes has been
enharnced.

An 1iterative processing technique must be utilized when
class separation is not readily apparent. In most cases,
varying the value of reference point two toward a rinimum
(Iq) proved highly successful 1in finding a good two
dimensional representation. The term good implies
sufficient. A sufficient ratio must be user defined. Figure

4.4c 1s a transformation of the example utilizing R2 =

(40,1,6) to yield a (12) .74883€. This ratio 1s not
minimal ©but certainly can be preceived as sufficiently

separating the classes.

D. SUMMARY

The 1location of reference points detarmine tke
information context of the distance space representation.
Yhen the distridution of classes within pattern space {is
unknown, an iterative technique based on some optimization

criterion can be utilized to locate reference vpoints which

provide sufficient transformations.
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V. EVALUATION PROCEDURE

Two different experimental procedures were emvloyea in

evaluating the performance of this dimensionality reduction

technique. Ir developling this procedure the initial method
was to locate a valid reference point (R) before perforring
a transformation. This was done to ensure the trarsformaticn
provided a unique mappine. After deriving an analytical
method of partially ©btounding the 1locations of valii
reference points'this method was reversed. The search for a
sufficlent transforration was conducted and, if required,
followed by a validation of the reference poirt. The
validation procedure will be discussed ¢fcllowed by the

sufficient transformation search procedures.

A, REFERENCE POINT VALIDATION

Assumption three of section 3C states a refererce poirt
(R) exists which will manipulate a circle of intersection
such that assumption two of that section will de true for
all 1lattice points 4in the pattern space defirned oy
assumption one. Without a closed form analyical derivation
for validating reference points the only way to validate a
reference point was to transform the data into distance

space and verify a unique mapping existed. Confirmation
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required an exhaustive comparison of each data point with

every other data point to prove a unique mapping.

The computational <complexity 1involved in vperformirg
reference point validatiorn 1increased gxponentially as the
number of dimensions in pattern space 1{increased 1linearly.
This was as expected by the curse of dimensionality .

The SEARCHR2 computer program contained in this thesis
1s an 1implementation of equation 3.7. This algorithm
computes the two sets of constant differences , (Dliz- Dli)
and (xj - xi). and stores them in array data structures. The
alternative method of implementing the algorithm would bde to
forego the arrays and compute each difference as 1t is
required.

The first method, computing and storing the differences,
i1s computationally more efficient ir terms of execution tire
when more ¢than one candidate reference point 1s to be
verified. This is because the difference matrices need be
computed only once. The tradeoff for execution speed is
memory storage. The memory requirements increase
exponentially as the number of dimensions. The memory
requirerents can be decreased to some extent by requiring a
symmetric pattern space. The differences of (xj - xi) is the
regative of (xi—xj). This implies only (n * (n - 1)) / 2
differences in lieu of (n ) differences for each of the two
types of differences computed. Tabdle .1 vividly

demonstrates the curse of dimensionality” and 1its effects
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on memory storage required for wvarious pattern space

configurations.

Table 5.1 Memory requirements of program SEARCHRZ for

various pattern space configurations.

DIMENSIONS RANGE NUMBER OF TOTAL MEMORY REQUIRED
LATTICE FOR BOTH ARRAYS
POINTS (RYTES)
1 9 -5 6 129
2 2 -5 36 5672
3 g -5 21€ 3el186@
4 @ -5 1296 14265720

In this tadle, memory requirements for the difference arrays

are based on the T¥ORTRAN G programming larnguage as

implementated on an IBM 362/67. Single precision, four bdyte

numerical representation is assumed.

The memory allocation requirements can be overcome by
computing the (n * (r =-1)) / 2 differences as they are
required within the program flow. However the execution time
will dramatically increase as the pattern space
configuration 1increases in dimension. Only by optimizing to
the greatest extent possidle might an acceptadle program
execution time be geperated.

The need for this algorithm has been odbviated to some
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degree by the development of ar analytical derivatior of a
minumim bound on reference points. This algorithm is still
required when validating points inside the minimum bound as
noted in section 3C.

An alterpmative to circumvent bYoth of these prodlems
would be to evaluate a reference point only over the set of
known data samples rather than an exhaustive pattern space.
This technique would cure the curse of dimensionality but
would not guarantee assumption three for all points in
pattern space. This concept might be suitable in 1low mnolse
situations.

This ©possibility brings to light the consideration that
a unique mapping may not necessarily be required. What would
be desirable, but much more difficult to define, s a
transformation which does not permit samples from different

classes to map into the same feature space point.

B. TRANSFORMATION EVALUATION

The study of ¢transformation effects progressed from
simple synthetically derived cases in two and three
dimensiors into complex real data in 1¢ ard 32 dimensions.
All cases were mapped intc two dimensional distance space.
Research was first performed in geometrically corceivadle
spaces in an attempt to gain the greatest amount of insight.

All studies were performed or ar IBM 3€@/67. Transformation
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nurerical results were produced as well as two dimensional
Versatec plots of the resulting distance space
representations.
In performing the various case studies the evaluation
objectives were to :
1. galn an understanding of transformation effects;
2. confirm that the (Iq) ratio provided a valid measure of
transformation performance:;
3. determine methods of locating reference points which
provide a suf?ficient transformation;
4, show that real data can bYe successfully transfermed
into a 1lower dimensional representation ard still retain
information context.
Some insight gained in pursuing odbjective one has ‘teer
detailed 1in chapter 1IV. Further 4{illustrations will be
provided in the following chapter. The ‘chapter cn results

will document the wusefulness of the (I ratio and

q)
acknowledge some of its weaknesses.

The methods of locating sufficiernt reference points were
constantly being refined in processing the varlous case
studies. Initially it was thought that the optimium
reference points would exist only alorg an axis. This \is
most definitely not true. The search procedure evolved into
an iterative processing method. This method rated various

raference poiats solely on their resulting (Iq) value., The

procedure was to minimize the (Iq) ratio since the sraller
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in value (Iq), the more information context oresent in the
feature space representation. The maximum value of the
magnitude of the reference vector is unbourded. To limit the
search reglon the user arbitrarily selected a maximum dound
magnitude. Utilizing either the positive or negative bourd,
a single component of the reference vector was varied bdy
some interval to the opposite bound while holdirng all other
components of the reference vector constant. This allowei
the user to observe effects of various values of this vector
component. The effects were judged by corparing the various
values of (Iq) generated. Tha minimum (Iq) was selected ani
the procedure started again with a smaller interval centered
around the component value which generated the mirimal (Iq).
This procedure was continued until a mriniral (Iq) ratio had
been reached with that component. The process was repeated
for each component in the reference vector.

For slmple cases of three or four dimenslions
combinations of two or three minimal component values were
tested with all other values *eld constant. This test
occasionaly provided useful results but was not consistent.
After each component of the reference vector had deen tested
individually, all minimal (Iq) producing components were
combined together and tested. For all test cases, this
procedure always yielded the lowest (Iq) measure., Wher all
(Iq) measures were compared against their plots the minimum

(Iq) always had the "best’ appearing plot in ter~s of class
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clustering and class separation.

As of this report this iterative processing procedure is
the methodology recommended. However, this procedure is not
without faults. The test and evaluatior procedure requires
testing each component of the n dimensional reference
vector. This 1s a miror bYother in 1low dimension pattern
spaces bdut becomes quite awkward ir high dimensioral spaces.
The 32 space reference vector would have required 34
computer runs to claim a satisfactory search for a
sufficlent reference point. Secondly, it was discovered, not
unexpectedly, that 1local minima of (Iq) exist withir the
bounded set of possible reference points. At ovresent there
1s ro closed form solutiorn for firdire the optimal referernce
point. The only way to overcore problems of local minima is
extensive testing. Thirdly, if a sufficient reference point
is founa to exist bdelow the minimum dboundary for reference
point two, the SFARCHR2 program will be required to validate
the referernce point. This complicates the situatiorn even

further with all the limitations of that program.

C. Implementation tradeoffs

This technique provides the researcher or engineer a
choice of alternatives. One alterative will require a
certain amount of not 1inconsecguential time and effort to

find a reference point or points to provide a sufficient
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distance space representation. But the fruit of that effort
will be the ability to verform the remrmaining vortions of
testing and training in distance space. Significant here {is
that the time consurming portion of the effort is devoted to
the training phase. This is typically not the phase which is

time critical., The distance space representations are less

T e e

computationally complex. Hence, the testing phase will
berefit from the reduced complexity with decreased execution
times. Thls will be especially useful ir real time decision

making applications where ¢the testing phase is time
critical.

The second alternative is to forego the time comsuring

effort in training but with a commensurate 1increase 1in

computatioral complexity ina the testing phase.

The researcher or engineer must judge which is the most
cost effective for his applicatiorn. The followirg chapter
will hopefully provide some insight into what is required if

the first alternative 1s selected.




V1. EVALUATION RESULTS

It evaluaticg the transformation seven test cases were
studied. The evaluation proceeded from simple three svpace
problems to a complex 32 dimenslional real data probdblem.
Discussion of each case comments on how the data samples
were derived, the procedures in evaluating the case studied,
and the results. Graphic 1llustrations are provided as
appropriate. The appendices contairn complete documentation

or the progression of testing for all cases studied.

A. CASE 1 : A THREE CLASS THREE SPACE PROBLEM

A simple prodlem was first attempted to gain irnsight
into the transformation process. Figure 6.1a illustrates the
heuristically derived polints in pattern space. Apperndix A
contalns a 1listing of the points which make up each class.
The transformation was from three space to two space. In
three space (13) = ,2319393. The best (Iz) ratio achieved,
ir a less than exhaustive search, was €.0798612¢8.

Various linear comdinations of reference point twos (Rz)
wvere tested to observe the transformation effects on pattern
space. The distance space representations were plctted with

the X axis as distance to the origin squared and the Y axis

as distance to R2 squared. It 1is 1interesting to note 1in




Figure 6.1a A three class three space problem

I; = 0.231939

class 1 (1,2,3,4)
class 2 ( 5,6 )
class 3 ( 7,8,9,10 )
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figures 6.2 - f the results developed utilizing various
lirear combinations of an RZ poirt., OCbserve that the
relative proximity of the <classes 1s unchanged while the
relative positiors withir the classes are a function of the
reference point two utilized in the transformation. This is
to be gererally expected as the within classes relationships
will change as the reference point two changes. This is also
a function of the fact that the distance to the oriegin rnever
changes while the (d,) values vary as the (R,) vary.

This last observatior sugezest ac examiration of movice
reference polnt one from the origin in an atterpt to imrprove
class separation. While 1t may bde a valid concept the
transformation becomes much more complex in the process.
This examination 1s suggested as a toplic feor further

research.

B. CASE 2 : A THREE DIMENSIONAL BISECTED CUBE

A three dimensional cube of integer lattice points was
develoved for thls study. Thils case was previousily
discussed as the geometrically <conceivable example in
section IV C. PFigure 4.2 1llustrated the three space
configuration of the classes.

This case has some interesting complications. In pattern

space the (13) ratio is 1.609991. The class means are :

ATt

PR




Pigure 6.1b .096678 Figure 6.1lc

(-1,1,6) I .094691

Rg (6,1,-1)

Figure 6.1d .212315
(-1,21,8)

o

.080043 Figure 6.1
(6,-1,1) I, .079861
R, (1,-1,6)

Variations in within class relationships as R2 changes.

Figure 6.1e 2
2

Nl O oo

I3 = 0.231939




i

(x , v , z )
class 1 ( 1.66, 3,33, 1.5 )
class 2 ( 2.33, 1.66, 1.5 ).
The scatter within classes (Sy) are equal. An (Iq) ratio
greater than one implies the distance between the two class
means is less than tkhe average distance between a class rean
and the samples within that class. Even with the (Iq) ratio
greater than one there exists a distinct linear separating
boundary between the classes.

Appendix B contains a listing of the data points in each
class and a summary of the iterative processing steps for
this case. Ter 1iterations were required to achieve an
"optimal” value. As nroted in chapter IV a sufficient
solution was obtained on the fourth 1iteratior. This
demonstrates the value of having a two dimensional —plcture
of the data on which to make judgements about that data.

It occured to this researcher, upon examiring thne
results of iterations six and seven (see appendix B), that
the minumum value was symmetric in magnitude in the X and Y
components. Iterations 7 -~ 12 attempted to exploit this fact
by testing bdeyond the user defined bound of 999 iIn the X and
Y compornents of the vector. This proved quite successful as
figure 4.3a {llustrated., By syrmetrically increasing the
values of the X ard Y comporents the (I,) ratio was
minimized. As reference point two 1is moved further from

pattern svace the change {n curvature o0¢ the tangent
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intersection becomes almost nil. This occurs because the

circle of intersection begins to approximate the surface of
the sphere defined by the (d,) distance as shown ir figure
6.2, In effect, this forces similar points to map alrost
linearly 1into distance space. This fact accounts for the
apparent subclusters that exist in each of the classes.

In step seven, the Z components were varied to study
their effect on the (I,) ratio. As can de seen from the data
increasing Z 1in magnitude adbove one adversely affected the
(I,) ratio. In iterations 9,13,and 11 note that syrmetric
points in the X,Y plane yileld similar, {f not egual,
results. This can Dbe explained by realizing that the
“direction” of the circle of intersection of the various
symmetric points and reference point one are very nearly
equal. They differ in that the R, sphere is located on the
opposite side of the R; sphere.

This case study proved the most enlighting as to the
geometric effects of passing the intersection of the spheres

through pattern space.

C. CASE 3 : A CUBE WITHIN A CUBE

This case was selected to study the effectiveness of
using the (Iq) measure in a complex problem. Two cubes were
generated 1in a three dimensional pattern space containirg

integer lattice points in the range (2,0,2) to (5,5,5),

ik ol g




Figure 6.2 Change in curvature of the tangent intersection

pattern
space

In two space the secant line of intersection begins
to approximate the curvature of the circle
defined by d,. As R, is moved away from pattern
space the curvatu%e of the R, circle becomes

almost nil.
d;

pattern
space

case 2 d1<< d2
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Appendix C <contains a complete 1listing of the data. The
outer cude exhaustively surrourded the inner cube. The inner
cube mean was (3.6,%.0,2.5). The outer cube mean value was
(2.84,2.84,2.58). Thus the outer cube mean value Wwas
contained inside the inner cube. The three space (I3) ratio
was 2950.249. The “optimal” (I,) ratio was €6.218964. Figure
€.3a is the resulting two space representation. The
reference point two which yielded this result was (6,1,-1).
A listing of all points tested is contained in appendix C.

A mrore visually appealing result s 1illustrated in
figure 6.3b. Generated from R, equals (260,-60,1), the (I,)
ratio was 2574.547. The polnts are bdunched 1into six
clusters. Each group of points can be characterizd by 1{its
locatiorn on the Z axis in the three space representatior.
For example, the group located nearest the X axis in the two
space representation is all the points located or the Z = ¢
Plane 1n three space,

This example provides some insight onrn how the
transforration skews pattern space into distance space. 1In
this three space to two Space example, the perspective is
changed much like an artist would skew an image to vrovide a
three dimensional perspective on a two dimensional canvas.

This suzgest there may be some applications for this

transformation in the field of computer graphics.
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8ooa. r Figure 6.3b A visually interpretable two
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D. CASE 4 : THREE SPACE SERIES OF CONVERGING CLASSES

TR e TR R TR TR R T

This study was a series of five cases in three
dimensional space in a lattice containing all integer points
from (2,2,2) to (24,24,24). The cases differ by the relative
location of ¢the two classes in space. The data poirts for
the two classes were generated or a Texas Instrurents TI-59
calculator using the random number generator progranm
(ML-15). The class one seed was 2135. The class two seed was
754@. The standard deviation used was 2.8. These parameters
vere kept constant across the experiment so thet the only
parameters of variability were the distance between classes
ana reference point two. Table 6.2 contains the mear samples

generated for each class.

Table 6.2 Sample means for three space series of corverging

classes
case class 1 mean class 2 mean
X y 2z x y 2z

( 4.25, 3.41, 3.28 ) ( 20.16, 19.67, 19.58 )
( 6.8, 5.41, 5.88 ) ( 18.33, 18.%50, 17.€6
( 8.ee, 7.0, 7.09 ) ( 16.33, 16.58, 15.67 )
( 9.16, 9.41, 9.98 ) ( 14.33, 14.52, 13.66 )

o s N -

( 12,08, 11.41, 11.08 ) ( 12.23, 12.50, 11.67 )

This study was two fold 1in purpose. One goal was to

observe the effects on selection of R2 as the classes
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approached one another. Secondly, an attempt was rade to
distinguish where the transformation would not longer
separate classes.

As Dbdefore all cases were processed using the systematic
fteration procedure delineated in the previous chapter. The

following results were obtained.

Tadble 6.3 Iq results for three space convereing classes
case Ijg I, reference point iterations figure
1 @.261268 ©0.01458"7 ( 66, 66, 66 ) £ 6.4a

2 0.196720 @.027966  ( 63.‘63. €3 ) 4 6.4b

3 ©0.238156 ©@.47232 (-99,-540,-99) 5 € .4c

4 0.813121 0,1534097 (-99,-5498,-99) 4 €.4d

5 32.46€873 4.56¢885 (-150,-9090,-150) 3 €.4e

Cases one and two share simlilar reference pcints as do
cases three and four. Unfortunately, there 1is not enough
samples here to rationalize why this 1is so. Since the
classes vary between cases only by their separation then it
will said that the relative proximity bdetween classes does
affect the choice of R, In case five, the classes shared
the same mean. They were highly interleaved as shown by tiae
I yratio of 32.46€€7%. The change in the I, ratioc 1is a

measure of how much deinterleaving took place 1in the

€9
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transformation. Case five further supports the premise that
the relative proximity of the three space data was
maintained in that total deinterleavirg did not occur. This
techrique claims to only enhance separation present irn
pattern space in the distanmce space representations. To
further comment on the behavior of R2 will require a more
exhaustive examination of 1its vperformance wunder similar

situations.

E. CASE & : TEN SPACE SERIES OF CONVERGING CLASSES

This study is a series of four cases. Pattern spece is a
ter dimernsional {integer lattice containirg all points from
the origin te (19,19,19,19,19,19,19,19,19,19). Two classes
were gererated in each case. The samples were synthetically
derived using the IBM 36@/67 and utility program LLRANDCM
entry point NORMAL. The seeds were held constant for each
class over all four cases. The variance selected wes 2.4.
The following means were generated for each of the classes.

Read a class mean vector as a column in the tabdle,

Table 6.4 Sample means for ten space series of convergling

classes

(¢}
»

case 1 2

class 1 2 1 2 1 2 1 2

4.12 15.43 5.12 14.56 8.62 12.06 9.81 12.0¢6




3.18 15.68 6.00 15.12 8.42% 12.€2 9.7t 12.¢6
4,06 15.43 5.59 13.31 8.9€ 12.43 10.31 12.326

on

4,56 16.%0 6.18 14,06 8.0€ 12.43 1¢.21 10.06

2.93 15.93 6.73 14.56 8.26 11.93 9.92 9.78

4.50 15.37 5.75 14,26 8.12 12.31 12.31 9.8&7

4.25 16.18 5.81 14.25 8.62 12.18 12.37 9.12

3.81 16.37 5.62 13.50 8.06 12,00 9.93 9.e6

3.795 17.00 6.18 13.81 ?.5€6 11.62 9.62 9.18

4.00 16.12 €.43 14,37 8.9 12.27 10.1& 9.75

The goals of thls study are similar to the oprevious
study in three dimensions; to observe the behavior of R2 as
the classes approached one another and to atterct to
distinguish when the transformation would no longer separate

classes. The results obtained are detailed in tadle 6.E.

Table 6.5 Iq results for ten space converging classes
case Ilo I2 iteration figure

1 0.069465 0.004561 1 6.5a

2 @.158126 2.023578 1 6.5b

3 2.594771 2.062027 1 €.5¢c

4 36.600388 8.294£48 8 6.5d

The Iq results were obtained with the following reference

points:
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Table €.6 Sufficient reference points for ten sSpace

convereging classes

case reference point two
1 ( 51, 52, 53, 54, 55, s6, 57, 58, 59, €02)
2 (-501 ,-502,-503,-504,-5085,-506,-5¢7,-508,~509,-510)
3 (-501,-502,-£03,-504,-50% ,-5¢6,-507,-5¢8,-529,-512)
4 ( 999, &¢o0,-821,-219,-111, 922,-999,-411,-511,-611)

In observirg that only one 1iteration was required to
find a sufficlient separation, it <can be said that the
inherent separation 1n the data allowed a wide cholice cf R,
to vrovide a sufficient transformation. It is interestinz to
note that cases two and three utilized the same reference
point. This is the same occurance as with the three svace
study. In bdoth studies the reference points for the
coninterleaved cases were not near the sufficiert sclutiorn
reference points for the interleaved cases.

The transformation had no probdblem mairnteining or
2nhancing the inherent separation irn the data. Only 1in the
overlapping case was an 12 < 1 rot achieved. Eowever, a
significant reduction in the Iq ratio was achieved in all
cases.

In the <fourth case of this study the adminstrative
complexity of high dimensional data ©became a burdern. To

allow sarpling over all elements of the R, vector ten
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iterations should be required. In the evaluation only -eight
were performed as modifying the individual components of the
reference vector became unwieldy. The burden could be
essentlally overcome with a more automated test procedure at

the cost of more computer execution time.

G. CASE € : TEN SPACE THREE SHIP RADAR TARGET RECOGNITICN
DATA

This study was conducted to observe the performance cof
the transformation on real data ir high dimensions.

The data was collected by the Naval Weapons Cernt2r,
China Lake, California as part of a research effort or radar
ship classification techniques. The samples consisted of
radar profiles of selected ships. The samples experienced
some preprocessing orior to being input to the
dimensionality reduction technique. The received radar
echoes were taken from the radar receiver and fed through an
analog-to-digital converter and eventually stered on
magnetic tape. The remaining preprocessing is shown ir
figure 6.6.

The samples were gathered in 512 dimensional space. For

the purposes of this study only the first ten comporents of

each sample were utilized. When received from NWC the

sarples ranged in value from -8.¢ to 1.2. To reet the

assumption that the data exist in a lattice pattern space it
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Figure 6.6 Preprocessing flowchart
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was scaled into an inteeger space rangine from ¢ to 3¢€¢ 1in
each component. Fach real number component was scaled with
the followinz procedure :

1. add 8.9

2. multiple by 32.9

3. add 2.5

4. truncate the fractional part.
Appendix F contains the resulting samples and the iterative
processing results, In the first case of this study each
class contained 16 samples.

The ten space data had a (I;,) ratio of 2.750768. The
sufficient (I,) ratio was .189089 when processing ceased.
Twelve iterations were required to achieve this result.
Figure 6.7a is the two space result of the transformation.

The 1iterative processing technique proved effective.
After identifying the best” value for each comporent of the
reference vector ir iterations 1 - 11, the "best” value for
each component was placed into a single vector. This step
ylelded a result of 2.442269 and figure 6.7b. In examiring
each of the components of the mean sample for each of the
classes 1t was observed that the components with the most
variabilicy between classes developed Iq min?nizing
reference point components which were not near the user
defined Ddounds of plus or minus (9999,9999,...,9988). In
this study compnonents one, two, and three of the sample mean

vectors exhidited this behavior. The remaining components
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had miminal variation of mean compoaent values between

classes. The remaining components generated reference vpoirt
twvo comrponent values at the user defined bounds, -999S or
9999.

In making these odservations it was decided that the
"best” value for those components with values at the bound
had rot reached the minimum (I,) for that element. These
particular values were increased by a factor of ten and
tested again. This was the vector which generated the
minimum (I,). This ©behavior is similar to that docurentel
for the X and Y components of the bisected cube prodlem.

After determining the reference point two which yielded
the 1lowest (12) over the 48 sample set it was declided to
test the entire set of tralnirg samples. The trainine
samples consisted of 423 samples divided into three classes.
Class one contained 141 samples. Class two consisted of 137
samples. Class three had 145 samples. Two reference points
were - tested. The first was the value determined for the 48
sample set. The second point was similar to the first bdut
with the negative -9999 components irncreased by a factor of

ten. The following results were obtained.
Table 6.7 Ten space ship profiles reference points
reference point I2 figure

(-3000,-4500,-7000 ,-9999,-9999, 1.878162 €.7¢c
99999,99999,99999,99999,99999 )
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Figure 6.7d Ten space ship data 423 samples
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(-3000,~-4500,-70¢3,-99999,~-99999,
99999,99999,99999,99999,99999 ) 1.310979 6.7d

Figure 6.7e is an enlargement of the heavily clustered area
of figure 6.7c. ¥Whlle there 1is a large amourt cf ncise
present, as would be expected in real data, the «claim will
be made that three distinct clusters of data exist, one for
each class of ship. Figure 6.7f is an erlargemert of fieure
6.7d. The same claim regarding clustering is made for this

representation also.

G. CASE 7 : 32 SPACE THREE SHIP RADAR TARGET RECOGNITION
DATA

This study is a continuation of the previous study in a
higher dimension space. The same ship profiles were utilized
with 32 components per sample iastead of ten. The samples
were scaled in the same manner as the ten space samples.
Appendix G contairs the references polints tested in the
1 terative processineg ard the sample means for each of the
classes. The samples are not 1listed due to their large
number,

The two space representatiorn of 32 dimensional samples
in figurF €.8 exhidits much similarity to the ten space
representation ir figure 6.7c. The general location of the
three ship classes 1s unchanged vetween the two figures. The

reference point which geperated the 2.189287 (I,) ratio for
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Figure 6.7e Enlargement of heavily clustered area of

figure 6.7c.
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the ten space study was utilized as the first ten corrponents
of the Z2 space vector., Sixteen iterations were required to
test the first 24 corponents of the reference vector. The
minimum (I,) ratio obtained was 1.624708. The 22 space (I3;)
was 3.607182. The similarity between the 32 and 18 space
revresentations 1is as much as result of the data as the
transformation. A discussion of the data and its meaning |is
beyond the scope of this thesis. The claim i1s agaln made
that the two space representation contains three distirnct

clusters, one per ship.

H. CASE STUDIES SUMMARY

A series of seven cases have been tested. The studies
highlight various effects found 1in the transformation
process. The simple three <c¢lass three svace v©probler
illustrated the changing relationship of data within classes
when Rl is fixed at the origin ard 32 is moved around. The
bisected cube provided insight 1inte how the curve cf
intersection passed through pattern space. It further
demonstrated gzeometrically how the curve of intersection
should cross pattern space to achieve the greatest amount of
class clustering. The cube within a cube example was
utilized to study the use of the'(Iq) measure in a complex
problem. The (Iq) ratio was shown to yield gond results when

used as an optimlization <criterion. However, it was also

g4
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o AL 2 s 1R




shown that when different goals are desired (graphical

display) (I ) may not be the dest method of achievireg that
objective, The three and ten space converging class studies
demornstrated that as loneg as some separation existed between
classes that separation c¢ould be enhanced ir the lower
dimensional representation. They further illustrated that
the transformation will nrot remove class interleaving
inherent in pattern space representations. Stated
differently, the general relationshi,s which exist in
pattern space will bYe retained in the distance space
representation. These two cases dememstrated that the
transforrmation process can function effectively in a noisy

environment.
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VII. CONCLUSIONS

A nonlinear transformation has been develoved which
retains or improves relative proximity of similar
information while sienificantly reducing the representations
of data for several specific cases. These studies have shown
the feasibility of this technique. They suppoert the
supposition that this transformation 1is a valid ©process
suitable for general applications of dirensionality
reduction.

The concept of 1irnformation context s valid. By
representing in m dimensional space the relative
relationships of data in n dimensional space, rather than
the data {tself, there is essentially no 1o0ss of contextual

information in the lower dimensional representation.

A. RECOMMENDATIONS FOR CONTINUED RESFARCE

1. First and foremost is testing the reduced
representations in a pattern classification algorithr. To
truly JjJudge this ar effective techrique the pattern
classification results must yleld equal or detter results
than the classification results odtained with tke n
dimensional data.

2. Development of a Dbdetter method of efficiently and

-
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rapidly locating "optimal” reference points is critically

needed. The current methods will become unworkabdle as higher
dimension spaces are tested. The method could de some closed
form analytically derivable result or an iterative search
computational method.

3. Bigh dimensions should be explored to observe any
effects which may present themselves.

4. The minimum ©bound on the 1lattice point interval
should be determined. This researcher feels 1t will be the
smallest interval which will still wuniquely represent
information at the desired level of accuracy. As an example
for single oprecision FORTRAN on the IBM 3€0 (7.5 digits
accuracy) if the interval 1is @.2¢01 ther all points 1ir
pattern space must be capable of deing uniquely represented
within the remaining 3.5 digits of accuracy. A second Dbound
on the lattice interval will bde the discretlization process.
If ar analog-to-digital converter collects eight ©bits of
information then those bits define the information cells of
the lattice.

8. Different measures of information context needed to
be derived and compared to the current deflinition. Is the
concept of measuring localized distance as defined by Meisel
(2] a valid measure? Duda and Hart [1] also suggest several
alternative measures.

6. The effect of assigning to reference point one values

other than the origin should bde studied.

o7
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7. 1Is there any significant advantage to mapping through
a series of distance spaces to further enhance relative
proximity? This could bde done bdy one mapping to, for
example, two space followed by several two space to two
space transformations. A second method would de to map from
n space to n - 1 space ton - 2 space to ... to two space,

8. Given that the data can Ye uriquely mapped into one
dimension, can a reverse transformation be found to return
the data to n dimensions? Thils question is complicated bdy

the fact that the solution exist in norcontinuous space.
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APPENDIX A TEST DATA FROM CASE STUDY 1

A. SAMPLE DATA

Sample Class

P P, PN P P P, e, P

(/1

- L J

[

- -
DOD P AN
Nt st Nt Nl Nyt Ve "ot s et
LRGN N P

B. REFERENCE POINT TEST
REFERENCE POINT
1, ITERATION 1

( - 1' 1, 6
( 6| 10 - 1
(- 1, 21, 8
( 6’ - 1| 1
( 1' - 1. 6

99

Nt N el Nt

Index number !

RNOWOD-VIBN P AN

[WY

I,

.29€66€678
.0946914
.21231587
.280043€
.9798612

i TG
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APPENDIX B TEST DATA FROM CASE STUDY 2

—

SAMPLE DATA

A.

Class

Sample

R e e T e AV R o~ » \ o & K " T o 5 - ey it o 4 " i o1

Herirdt ettt m Attt At et AN NNNNNNNNNNNNN

BTN TN SN e, SN PN NN P TN N SN PN o, PN NG 5 PN e, B Py, P P S PN (N P, P N PN S, PV, N G P

DA NN ANNOS AN ANMNSANNNRANNNS AN NSO NS -~

. & & & ¢ e e et e s S gt s et e e e e e e a0

NANNNOOMOOAIIHIA ARG AOON I NI A A At A Al At ANNONND W

* & & & & S e & a0t e e e s e e e e s e e

et A et At A NNNNNNNNODODMDNNNNDODODOMNOOMD NN

Nt Vst Nt Nl Qo ol il Nt Nt st Nt ot Nl gyl Vsl il ) sl il Npgl) ot sl Vit stttV il g "tV sl Nl Vot itV et sl NtV ikl it it

100




§
( 4, 2,
(
(
(
(

] B. REFERENCE POINT TEST

1.

e

2.

NN
el s e NP ©s e e

REFERENCE POINT

ITERATION 1

ITERATION 2

SN, TN e, N PN e, P P P g, P e,

Iteration 3

S ST S S P

21.

1,
21'
18,
18,

i,

1,
12,
15,
12'
15,

8,
19,
le,
20,

13,
15,
16,
1?7,
is,
19,

1,
1,
2,

1,

1,
16'
18,
21,

1,

DO M

b b b b b b

NN DN

Nt st v ot Nt

R s e

i a2 NIV LN TN L N D W)

I2

18.244924
1.575197
.678E84
622244
18.244934

1.5342¢8
2.392746
80.819992
82.819992
2.392746
2.391603
1.246020
2.391603
1.2€6020
36.219989
36.9219989
.491111
.454380
.464800
.514654

.4580€0
.453136
. 472577
.480899
.489444
. 498007
.506450




;
P
f
:
'

P PG P gy, PN Sy PN PN P P P

Iteration 4

(

Iteration 5

Iteration 6

Iteration 7

LT W W P B Y

Iteration 8

12,
12,
12,
12,
12,
12,

1z,
12,
12,
12,
1z,
1z,

12,
12,
12,
12,
12,

12,
12,
50,
50,
99,
99,
99,

12,
iz,
12,
12,

OGN N
Tt ot Nt Nt St Nt Vg it Nt vt Vst ol

T
Nt gt S Nt Nl N

s s

13
21

N N St St s

QNN
el e et

1
1

102

Tt g s ol Nt st
\

. 480899
.4980¢7
. 506450
.514694
. 522686
. 474437
.4808¢0
.493355
. 507979
.522857
. 602823
.748836

. 336800
.303828
. 267222
.262812
.281728
. 319726

.268448
.274821
.289€05
«296527
.599325
.613893

+2€2€12
. 356862
.675312
1.450312
2.294062

. 2690€2
. 300312
. 203979
. 205779
.200923
+204229
.207€13




( 99, - 99, 1)
F ( 150, - 150, 1)
3 ( 200, - 200, 1)
{ ( - 150, 150, 1)
b ( - 200, 200, 1)
: ( - 99, 99, 3)
( - 50, 5@, 1)
( 59, - 50, 3 )
9. Iteration 9
: ( 3900, - 300, 1)
i ( 300, - 300, 3 )
1 ( - 300, 300, 5 )
( - 300, 300, 32 )

18, Iteration 10

e aa o Ll

( 3s¢, - 350, 1
- 400, 420, 1
- 5¢0, 500, 1

- 509, 5e¢, 100
- 409, 409, 129

S~ P S p—
st e el S

3 11. Iteration 11

» ( 600, - 600, 1)
E ( - 7.@, 700, 3 )
3 ( seo9, - soe, 1)
- ( - 999, 999, 1)
i ( 999, - 999, 3 )

103

. 200923
.200402
. 200232
.200402
.2002%2
.208923
.201215
.203619

.200100
.200119
.200160
.204160

.20ee77
. 200053
.202838
217802
.227349

. 200025
202018
.2¢01391
.200012
.200012

skl s

Rl gl i,
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APPENDIX C TEST DATA FROM CASE STULY 3

SAMPLE DATA

A.

Class

Sample

At AT A A AA A NNNNNNNNNNNNNNNNNNNNNNNNNNN

PN TN T PN BN PN P, T N TN N I T, VNN NN AN B N PN PN P TN TN N TN N G, TN TN N TN TN

NFNMMNNNINNNHNIISIOS eSS E N

" & & & & & S " & e O & .t eSS st s e e e

MONNFHIOIINDANNANANDFOANNIAINANION AN HNAN

> & & & o e & a5 & ® & & & & & & " st st e e s

MMM GEINNAAAANANNNNNIINIOHEE P EHNDNN O

sl Vst St Nt St S Nt N P vt N s S St S Nt st Vot et Sns? ot Sasl Sosll ) il Nt et Nasl? sl Nt it vtV s gl St il s it
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ot B At

NONNNNNNNNNNAUNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

- & & & & & s & & et st st s Er s st s s s

125

e i




222222222222222222222222222222222222222222222222222

PN TN ST SN SN ST i, P P P P P ey, PN e, P )))))))))))))))))))))))))))))))))

22333334.4.4.4.4.4.4.4.4.4.4_4.4.44.11111222221111122222333333333

> & & & & ¢ & o ¢ o e s e & & & & & o & st e S eC e e e st e s e s e e .

(((((((((((((((((( (((((((((((((((((((((((((((((((
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— e

( 5 5, 3 ) 2

B. REFERENCE POINT TEST

560 .913424

REFERENCE POIAT 12
1. ITERATION 1
( 21, - @1, 18 ) 506 .1¢6934
(- 1, 18, 21 ) 567 .919434
( 21, 18, - 1) 274 .874023
( 18, 21, - 1) 274 .874223
( )

18, - 1, 21
2. ITERATION 2

( 13, - 1, 1) 165,419464
( 12, - 1, 1) 148.7@72862
( 15, - 1, 1) 2990 .934296
( 16, - 1, 1) 219.4760213
( 17, - 1, 1) 238.39184€
( 18, - 1, 1) 257.587891
( 19, - 1, 1) 276.977295
( 18, - 1, 2 ) 255,8@3177
( 19, - 1, 2) 275.258789
( 20, - 1, 2 ) 294 ,842¢41
( 21, - 1, 2 ) 314.477783
( 12, - 1, 3 ) 14€.,.451431
( 14, - 1, 3) 18¢.792052
( 16, - 1, 3 ) 217.55215€ |
( 18, - 1, 3 ) 255,802227
( 20, - 1, z) 294.842¢41 ‘
( 42, - 2, 6 ) €86.232518 Y
( 49, i, 6 ) 621.195801 \

3. ITERATION 3

(- 1, 12, 15 ) 322.457764
(- 1, 15, 12 ) 289.038574
( 12, - 1, 15 ) 322 ,45752@
( 15, - 1, 12 ) 269, 93808€
( 12, 15, - 1) 178 .622330
( 15, 12, - 1) 178.62223

( 8, 12, - 1) 92 ,78541€
( 1, - . 1, 1) 118.168716
( 14, - 1, 1) 182.874771
( 20, - 1, 1) 296.498291
(- 1, 1, 6 ) 95.293445
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é 6, 1, - 1 ; 66.218064
- 1, 21, 8 238.431296
( 6, - 1, 1) 74 ,488F47
( 1, - 1 6 ) 9% .,092933
4, ITERATION 4
( 6, 1, 6 ) - 146.091446
( 29, 6, - 5 ) 263 ,564941
( 7, 4, € ) 281.825176
( - 8, 20, 6 ) 435,876953
( 6, 11, 6 ) 275.054688
( 6, 14, -~ 7)) 206 .950363
( 1, - 8, € ) 388, 758789
( - 19, 17, 6 ) 567 .541748
§. ITERATION 5
( 3€, €, — 1) 487,241504
( 360, €8, - 1) 1335,837891
( €4, - 8, 1) 1160 .075684
( - 5049, 509, 6 ) 1789668, 0302200
( 26, - 6, 1) 731 .30€641
( 362, - 60, 1) 2534 . 004395
( 640, - 837, 1) 2574 ,547363
( &g, g, - 1) 042 ,90625¢




Nl e

G S, S SN PN P, P P P P I

A.

BN P SN BTN Py Py, PN P P PN g, P

APPENDIX D TEST DATA FROM

CASE STUDY 4

SAMPLE DATA

1. CASE 1
Class 1 Class
7, 4, &) ( 16, 189,
5, &, 2 ) ( 20, 21,
2, 3, ¢ ) ( 22, 19,
5, 2, ¢ ) ( 22, 19,
6, 6, 2 ) ( 20, 26,
4, 5, 9 ) ( 17, 19,
4’ 39 2 ) ( 22' 22'
6, 3, 2 ) ( 21, 21,
5, 2, 5 ) ( 26, 21,
2, 5, ¢ ) ( 19, 21,
4, 3, 1) ( 21, 15,
3, 2' 8 ) ( 18' 19'

2. CASE 2
Class 1 Class
9, 6, 5§ ) ( 14, 17,
7, 5, 4 ) ( 18, 19,
4, 5, 6 ) ( 20, 17,
7, 4, 6 ) ( 20, 17,
8, 8, 4 ) ( 18, 18,
6, 7, 2 ) ( 15, 17,
6, 5, 4 ) ( 18, 29,
80 5' 4 ) ( 19v 19’
7, 4, 7 ) ( 24, 19,
9, 7, 6 ) ( 17, 19,
6, 5, 3 ) ( 19, 21,
5; 4. 10) ( 18' 19'

19
17

16
24
16

16
19
15
16
22

N Nt sl St ot skt St ¥ st "t Nl

Nt Nt sl Nt Nl Nt st sl oy ot “cisl vtV

v s e




P v, S, S (P, Jry, PN P Py P P P~ N S, P, PN P P P P P PN P

SN S, SN, SN PN vy TN P, S, S S S

3. CASE 3

®
O
-
OO OIODDOO N
Nt et i Nt Sl i Vs “uet® Nl S gl e

5. CASE 5

Class 1
12,
11,
11,
10,
14,
13,
11,
11,
10,
6, 13,
11,
10,

14

11
10
12
12
10

1¢
10
13
12

16

Nt Nt vt Nt Nt et et etV Vgl ot “rt® Suut®

T Nt Nt Nt Nnat st St sl gtV “e? ki el

SV ST, v, S S P, P PN iy, P v P

ST, S, v, SN N, SN PN TN e, PN P, P

PN S i Py, o~ P~ P P~ P~ i~ P

Class
15,
17,
15,
15,
16,
1s,
18,
17,
17,
17,
19,
17,

15,

Clas

(0]
-
(&Y
[y
-

13,
11,
11,

S, 11,
14,
13,
13,
13,
13, 15,
13,

110

2

17
15
13
14
22
14

14
17
13
14
20

s 2
13
11

10
18
10
11
10
13

10
16

et e e e ekt et el i st et i “eni®

Nt S Sl Vet Sl Sl s sl il e sl “wnrtV

Nt St St Nl et el et~ sl i "t st “mit?




B. REFERENCE POINT TEST

1.

REFERENCE POINT

CASE 1

d.

o’
.

TN S P S vy, e, PN P, S~

Iteration 1

'
[y
-

- 73'

Iteration 2

999,
999,
5¢9,
509,
590,
50¢,

999,
999,
500,
500,
509,
509,

Iteration 3

125,
250,
- 1,
500,
- 999,
- 899,
500,

125,
2¢%0,
100,
S5ed,
- 999,
~ 999,
~ 500,

Iteration 4

55,
67,
27,
49,

55,
67,
73,
33.
27,
49,

Iteration 5

66,
63,
61'
59,

66,
63,
69,
61,
59|

[y

299
500

999
999

—
R T L g

125
250
100

998
999
500

-
T Nt sl e St e

55
67
73

27
49

s Nl e gt gt "l

€6
63
69

N Nt o et ot

59

111

I

2.293S77
.106397
.N29866
.045€06
.034925
.014635
.029114
.037278
.046832

.216¢88
.029569
.215915
.029797
.02008€
25.971329

215041
.215889
.923590
.029975
«234499
.016451
.203192

+014684
.214£88
.214609
917653
.021412
.214898

.214587
.214592
.014892
.014602
014620




( 57, 57, 57 ) .014646

2. CASE 2

a. Iteration 1

(- 1, 42, 1) .127064 1
( 42, - 1, 1) .186043 !
(- 1, 57, 42 ) 043038 ;
(- 1, 47, 125 ) .288668% ~
( 77, ™, 1) .058361 {
( 7?7, ”, 7)) .027151 -
( - 127, - 127, 3) .P45052 P
(- 1, - 8, 1) .251349 »
b. Iteration 2 !i
( 999, 999, 999 ) .828986 N
( 999, 999, 1) 047432 |
( sSee, 520, 500 ) .028773 i
( 5ee, 5e0, 1) .047993 .
( see, see, 999 ) 238980 ‘
( 508, 529, -999 ) 109.819839 ‘
c. Iteration 3 f
( 58, 55, 55 ) .027149
( 67, 67, 67 ) .027873
( 33, 33, 33) .038525
( 27, 27, 27 ) .234905
( 49, 49, 49 ) 227375
d. Iteration 4 ‘;
P
( 66, €6, 66 ) 027069 .
( 69, 69, 69 ) .027083
( 61, 61, 61 ) @27973 !
( 59, 59, 59 ) 027087 i
( 57, 57, 57 ) .027112
3., CASE 3 ’
a, Iteration 1
( - 1, 42, 1) . 242905
112




m
.

S, Py i, P P Py, N

Iteration

999,
999,
999,
1,
999,
989,
39,

Iteration

Iteration

te et
I T I R R I I

-t
[
m
s
[+ ]
Lo d
e
o
=]

999, 999
999 ,-999
$99,-999
153, 1
999,- 1
999, 1
180, 1

3

99@,
66, 6
63, 6
30,
45@ [}
450,-
180,~

4

183, 1
1ge, 1
183, 1
180,- 1
180,- 39
18¢,~- 33
184, 1
177, 1

5

900 ,-900
9¢0,-150
180,- 99
540,- 99
33, 33
150, 9e0
960 ,~ 40
60,- 2
90,- 4

113

Nt Nt Nt e Nk etk “tt® N

.405388
.291247
.192583
.12922¢
.B€1053
.297261
.290916
.177960

.063€91
.910851
264311
.965192
.102021
.102291
.260995

.264361
. 260896
.06087%
.207€36
062134
271101
. 083405

.0€1242
.2611@3
.2611€4
.062224
.049189
.249178
.DEDP9ES
.062952

.06€4%9
.248069
.049€38
047232
209693
.120490
.058638
059914
.957103




4.

%

120, -
12¢, -

CASE 4

a.

o
.

(2]
.

2
.

P Ny Py, PN Sy, Py, PN Sy, P TN P, o PN PN S P o~ S~ S Sy S S~

N Py, P S, S P PN gy, P

(

Iteration

!
-
-

[ |
-
N

[ad |

- =

[ |

Iteration

- 30, -
999,
- 999, -
- 999, -
- 899, -
999,
- 189, -
- 180, -
66,
63,
56,
57,
61,
67,

~

Iteration

40,

I T O I O N I I )
W
[~
-

I I IO I N B |

Iteration

- 150, -

20, 5 )
28,- 5 )
1
42, 1)
1, 1)
57, 42 )
47, 125 )
77, 1)
77, 77 )
127, 3 )
6, 1)
6,- 1)
2
180, 1)
999, 999 )
999, @ )
999, 1)
999,- 1 )
999, @ )
900, 1)
90d,- 1 )
66, 66 )
63, 63 )
59, 59 )
57, 57 )
61, 61 )
67, 67 )
3
240, 1)
240, 12 )
240, g )
e, 0 )
300, 5@ )
120, 1)
120,- 5 )
190, 1)
i7a, )
4
900,-902 )

114

.200673
.178624

.712316
.297319
.287248
.6E26€28
.445736
.214881
331711
257414
.618422

.194983
.220502
.352891
.353415
.0552478
.363830
.208534
.207464
.214384
.214271
.214157
.214122
214208
.214425

.197993
.182372
.196409
.198964
301546
.191039
.178492
.195347
.192591

.219152




[

a.

2
.

(
(
(
(
(
(
(
(

5. CASE 5

— P ST SN, S PN i, P~ P

- 180,

- 33,

- 99. -
lge,
9¢49,

- 1692, -

- 12”. -

Iteration

- 1'
42, -
- 1.
- 1,
7,
77,
127, -
- 1, -
- 73, -

Iteration

15¢, -
- 39, -
- 75, -
e,
1,
1,
1%, -

Iteration

40,
42,
40,
50,
50,
20,
20,
30,
3o,

Iteration

1%0, -
1%¢, -

9¢0,-1590

180,- 99
33, 33
i1se, 909
960,- 42
66,- 2
2e, 5
1
42, 1
1, 1
57, 42
47, 125
77, 1
77 o
127, 3
6, 1
6, 1
2
9@o0, 1
189, 1
450, 1
1911,7008
86, 63
234, 168
9e9, 2
3
240, 1
240,- 10
240, ("]
200, Q
300, 50
120, 1
120,- 5
190, 1
170, 2
4
900 ,-900
909 ,-150

N el S il kP ot el el

et et N it s st Nkt e e Sl S it el <t

Nt Nl it Ve Nt Nl NtV NngetV "t

e e

115

.156127
.188531
.153407
.761994
.430386
.190221
.182952
.708054

18.3256¢€8
38.237442

8.1802¢€7
28.916891
21.455872
11.846129
15.333944

9.163347
52.3905€4

5.622728
5.433392
5.564706
41.082291
?7.130882
6.4€9952
5.621341

5.484715
5.158225
5.450282
5.485142
?7.647579
5.441672
€£.168211
5.413536
5.45808€8

8.136481
4.5€0885%




9y

99,
180,
909,
160,
122,
129,

i8e,-
540'-
33,

15¢, 5090

9€o,-
€0,-
20,
20"’

99
99
33

40
2
5
5

116

2 RPN T ¥

£.401924
4.581217
99.351578
38.8¢6274
5.247082
5.492326
66.094223
57.096405




A. SAMPLE DATA

1.

Class 1

Class 2

APPENDIX F TEST DATA

CASE 1

SN N SN SN PN PN N P PN N iy STV S P P~ —

S N S S N PN S PN P, PN S PN o P

[T}
-

® e W W ® @ ¢ 9 ¢ W T e ¢ e w

DI GIRP RPN

12,
14’
16,
1g,
16.
16,
16,
15,
16,
15,
18.
18,
13'
14,
18,
16,

2]
-

AR N
® e v e

3,

FROM CASE STUTY 5

16,
1e,
15,
15,
18,

17,
17,
19,
17,
16,

13.
16.
18,
18,

. ®w * w9 e w

S
-
O JONO O o]

15, 19,
1, 13,
19, 13,
15, 15,
15, 13,
19, 15,
16, 17,
lg, 17,
16, 1€,
16, 15,
15, 186,
13, 1%,
16, 16,

17, 18,
17, 14,

117

16,
15,
14,
17,
14,
18,
19,
16,
16,
16'
19'
17'
18,
16,
15,
16|

15,
14,
16,
15,
15,
16,
18,
1s,
17,
17,
19,
17,
1g,
16,
18,

16,
16,
19,
17,
16,

16,
16,
18,
18,
16,
1%,
16,
19'
18,
16,

DI POAPOONNPANF .

N N Nl N (sl Nt el el sl P el e "ot Sl "ot e ~—

ittt P et el kP e it o e et et ot st el it




2.

Class 1

Class 2

CASE 2

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

PN TN P, T ST N P, TN P P P P T PN Ty,

21,
16,
16,
15,
15,
15,
15,
13,
14,
16,
14,
13,
12,
16,
14,
17,

14,
14,
12,
14,
14,
12,

13,
12,

12,
1z,

1a,
14,
11,

15,
14,
15,
15,
15,
14,
17
15,
16,

12,
14,
13’
13.
11'
1z,

* ® @ W @ e v w @9 o

QMO VAODRONMPORUD
(L NG RORS Ny N Ne No Mo  No R VRS LIS NS N0

® ® @ W @ * W e * ® ¢ ® W e v

* @ ° -

-

15, 1a,
14, 15,
19, 12,
15, 16,
15, 13,
14, 14,

14, 15,
15, 14,

14, 11,
14, 1%,
14, 14,

13' 16'
13, 14,

118

POOWO P VD
- - » - @

4
-

- ® @ w e v e e

DO 0O

14,
15,
17'
14,
15,
13,
12,
17,
15,
13,
12,
15,
12,
14,
16,
14,

PHROORODORREODWO DM

st el el el N "t ekl “oatP sl il wsall i el el et

R e A WL N S N TS L W L ]




Class 2

ST PN SN PN P g~ P oy v~ P N P P

P PN Ty BN T~ P~ P~ o P S~ P~ T

12,
13,
13,
19,
12,
12,
11,
12,
15,
13,

13,
13,
13,
1%,
13,

(o T IR R l0 o

119

12,
14,
14,

11,

1z,

15,
ie,
12,
11,
14,
14,
11,
12,
lg,

-
MONSOFRPSOOOWOD®D MmN

[

12
14
12
13
11
12
14
18
12
13
12
1¢
12
12
12
11

Nt st et e N s it S Nt e il el oo " e Sma?

RGP o o1 e -




4, CASE 4

Class 1

P et 5T e e e

9, 10, 13, 11, 11, 11, 12, 12, 9, 1¢
10, 10, 12, 8, 14, 9, 1¢, 9, 9, 1¢

12, 11, 17, 18, 11, 12. 15, 11, 18, 10
1]
1@, 190, 1@, 11, 9, 18, 11, 12, 9, 10

14
1¢, 8, 8, 7, 12, 7,12, 1@, 1¢
12, 12, e, 12, 19, 8, 9, &, 12, 12
11, 1¢, 10, 19, 10, 1@, 12, 14, 10, 12
1¢, 1¢, ie, 12, 10, 12, i1, 11, 9, 6
11, 1@, 15, 18, 12, &, 12, &, 11, 12
g, 11, 1@, 11, 9, 12, 11, 9, 9, 12
12, 1¢, ¢, 1@, 12, 8, 128, 6, 12, 14

SN PN A — P P P P P S T P
-
-

Nt Nt St vt S Nl okt el Nt ottt ol il ek il Nl et

&, 11, 11, 11, 7. 1e, 12, 11. 13, 18

Class 2
9, 12, 12, 12, 7, 13, &, 19, 19, 11
12, 8, 11, 1e¢, 10, 1¢, 19, 10, 12, 14
12, 14, 9, 12, 12, 12, €, 12, 12, 14

8, 1z, 1¢, 12, 13, 10, 190, 12, 10, 12
s, 8, 1o, 12, 9, i¢, 9, 9, 6, 12

1e

1¢, 9, 1@, 11, 8, 9, 12, 16, 11, 1¢
9, 9, 9, 8, 1@, 108, 12, 12, 9, 15
10, 10, 11, 8, 9, 7, 9, 11, 11, 1¢
12, 10, 12, 12, 19, 9, 1@, 1@, 18, 1¢

(
(
(
(
(
2
g 1¢, 6, 11, 10, &, 11, 1@, 7, 12,
(
(
(
(
(
(

120

Nt Nl e et e et e o ot et ot ot o et at?

B o e




B.

P~ P~ P~ P P T W W W L T T o W P

PN~ P P~

REFERENCE POINT TEST

REFERENCE POINT

1. CASE 1
a. Iteration 1

51, 52, 53, 54, 55, 56, 57, 58, 59, €2
121, 171, 182, 175, 123, 245, 186, 263, 298, 5¢¢
- &7,~- ®8,- 59,- 6¢,- €1,- 62,- €3,- €64,~ E5,- €6
-501,-592,-523,-504,-505,-5%€,~-527 ,-508 ,~-529.-513
é,-721,-821,-921,-111,-211,-311,-411,~-511,-611

2. CASE 2
a, Iteration 1

&1, 52, 53, 54, 55, 56, &7, =8, &9, 6@
121, 171, 182, 175, 123, 245, 286, 263, 298, 582
- 87,- 58,~- 59,- €¢,~ €1,~- 62,- 63,- €4,~ €5,- €6
-5€1,-5¢2,-503,-504,-505,-506 ,-507 ,-5¢8,-509,-510
9,-721,-821,-921,-111,-211,-311,-411,-511,-611

X, CASE 3
a. Iteration 1

&1, &2, 52, 54, £&£&, 56, 87, 58, 59, €0
121, 171, 182, 175, 123, 245, 286, 263, 208, S5¢@
- 57,- 58,- 59,- €0,- €1,- 62,- 63,~- 64,~ €5,- €6
-501,-£02,-503,-504,-505,-506,-507,-582,~509,~510
9,-721,-821,-%21,-111,-211,-311,-411,-511,-€11

4, CASF 4
a. Iteration 1

51, 52, 53, 54, 55, 5€, 57, 58, 59, €0)
121, 171, 182, 178, 123, 245, 286, 263, 298, 5¢@)
-57, -8, -£9, -€¢, -€1, -62, -63, -64, -65, -€6)

-581, 592,-503,-504,-505,-506,-507,-528,~529,-5123)
,-721,-821,-921,-111,-211,-211,-411,~511,-€11)

121

S et e e R N N

e et e e

204561
005734
.20c002
.204€54
.BCE724

224879
.234334
.P239€€
.223E78
232695

.083248
.278378
.R63750
.£62227
275828

29.958557
22 .20459¢
21.262271
21.251€€%
17.26201¢8

%
]
3
i
L

R A o S SR e 3




P Ve W

PN " PN P e, PP

L e W W P )

». Iteratior 2

-721,-821,-921,-111,~

211,-211,-411,-511, -1)

-1,-821,-921,-111,-211,-311,-411,-511, ~-1)
-1,-821,-921,-111,-211,-311,-411,-511,-€11)
-1,-821,-921,-111,-9¢90,-311,-411,-511,-€11)
-1,-821,-921,-111,-90¢0,-311,-411,-511,-611)

c. Iteration 3

-1,-821,-921,-111,~-9¢¢,

-1,-821,-921,-111,
-1,-821,-921,-111,
-1,-821,-421,-111,
-1,-221,-921,-111,

d. Iteratior 4

-1,-821,-999,-111,
-50¢,-821,-921 ,-111,
-1,-821,-921,-111,
-1,-821,-921,-111,
-1,-821,-921,-111,

e. Iteration £

-1,-821,-219,-111,
-1,-821,-219,-111,
-1,-821,-219,-111,

2,-821,-219,-111,

f. Iteration 6

20¢,-821,-921,-111,
2¢0,-821,-219,-111,
-1,-821,-921,-111,
-1, 821,-921,-111,
-1,-821,-921,-111,
-1,-821,-921,-111,
-1,-821,-921,~111,
-1,-821,-219,-111,

g. Iteration 7

809,-821,-921,-111,
-1, 999,-921,-111,
-1, 999,~-921,-111,
8e¢, 999,-921,-111,
-1,-821,-921,-111,
82e, 999,-921,~111,
80¢, 999,-921,-111,

¢,-411,-511, -1)
982, 999,-411,-511, -1)
9¢¢,-311,-411,-511, 500
9e¢,-211,-411,-511,-611)
999,-311,-411,-511,-€11)

999,-311,-411,-511,-611)
9¢9,-311,-411,-511,-F11)
9¢@¢,-999,-411,-511,~-611)
992,-€66,~411,-511,-511)
9p@,-211,-411,-511,-611)

o¢¢,-%11,-411,~-511,-€11)
o¢e,-66€,-411,-511,-€11)
909,-999,-411,-511,-€11)
900,-999,-411,-511,-€11)

900 ,-999,-411,-511,-611)
900 ,-999,-411,-511,-611)
9¢9,-222,-411,-511,-611)
ope,-999,-411,-511,-611)
90@,-311,~-411,-999,-611)
903,-311,-411, 1,-€11)
602,-311,-411, 5992,-611)
o¢¢,-999,-411,-511,-611)

908,-999,-411,-511,-611)
900,-311,-411,-511,-611)
90@,-999,-411,-511,-€11)
9¢2,-411,-411,-511,-611)
90d,-311,-411,-511,-999)
900 ,-999,-411,-511,-999)
9¢@,-599,-999,-511,-999)

122

14.78132€
13.908¢c81
12.0287€1

9.7@7917
18.12€908

19.077774
2911€ .8437
18.246217
13.567417
51.881221

13.7525¢€1
15.657302
9.724404
12.712649
12 .677059

17 .799¢42
11.379161
12.225€33
1¢.21740¢

9.311914
8.743191
13.9197€4
9.724404
14.558681
13.270512
1€.672279
10.228632

8.751494
13€4.4433
50.601532
4 .6549€2
15.521€€2

2.368722
31.293661

BUBVTISRC 7 SV




P P~

P T T W N NV N

8e@, 999,-921,-111,
8ed, 999,-921,-111,
8¢, 999,-921,-111,
02, 999,-921,-111,

h. Iteration 8

829,~-821,-921,-111,
8e¢,-821,-219,-111,
-1,-821,-921,-111,
-1,~-821,-921,-111,
ged,~-821,-219,-111,
8e¢,~-821 ,~-216,-588,
£93,-821,-219, 555,

90e,-999, 5¢0,-511,-999)
9¢0,-999, 999,-511,-999)
900,-999, 1,-511,-999)
929,-999,~592,-511,-999)

999,-999,~411,-511,-€11)
900,-999,-411,-811,-€11)
9¢0,-311,~411,-511,-611)
922%,-311,-411,-511,-611)
909,-999,-411,-511,-611)
9e¢,-999,~-411,-511,-611)
992,-999,-411,-511,-611)

123

188.3€65446
11877 .,2690
€4.88529
40.597549

8.751494
8.468982
11.77¢139
11.542337
£.294548
9.677239
9.24€E35

R Ty & YT A - e AtA
i a0 - - *

A
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APPENDIX F TEST DATA FROM CASE STUDY €

A. SAMPLE DATA
1. PHASE 1 : 48 SAMPLE TEST

( a' b! c' d" e' f’ gl h' 1! J )
Class 1

4, 124, 239, 2€7, 266, 263, 262, 260, 261, 2€¢
12, 230, 271, 264, 264, 261, 261, 259, 2690, 2€¢
16, 230, 271, 265, 264, 262, 262, 259, 259, 2€2

2, 225, 239, 266, 265, 262, 261, 2€0, 26@¢, 2690

192, 121, 237, 268, 268, 262, 262, 261, 261, 2€¢

8, 227, 2%9, 266, 2€4, 2€2, 262, 2€3, 263, 259

le, 227, 271, 265, 262, 262, 2€Y, 2€0, 2859, 259
225, 272, 266, 263, ?63, 261, 26¢, 26¢, 2€¢
39, 233, 262, 2€4, 263, 263, 261, 262, 259, 259
32, 231, 2€3, 265, 263, 259, 2€¢, 259, 25&, 259
19, 227, 2¢4, 266, 263, ?61, 261, 259, 258, 289
26, 229, 2€3, 266, 263, 2638, 261, 2€0, 259, 255
29, 23¢, 264, 266, 263, 260, 260, 2€0, 289, 2859
24, 230, 2€5, 268, 264, 26¢, 26¢, 261, 259, 259
16, 227, 2€7, 269, 264, 263, 269, 261, 259, 259

8, 124, 267, 268, 263, 262, 261, 261, 26@, 259

I

TN S, S S, oy P P S PN P S P~ P~
-
el e et e et el e e N el e et Na? s

Class 2

1, 115, 239, 268, 265, 263, 262, 2€1, 260, 2€0
191, 113, 240, 268, 262, 263, 261, ?61, 2‘9, 26¢
19, 225, 243, 268, 2€5, 265, 2€2, 262, 259, 2€1
6, 225, 269, 265, 265, 262, 262, 2€0, 259, 2€¢
191, 114, 271, 266, 266, 263, 262, 26@¢, 259, 26¢
2, 122, 27¢, 266, 264, 263, 262, 259, 259, 2€9¢
5, 122, 239, 268, 266, 265, 262, 260. 262. 261
2, 129, 271, 266, 264, 264, 261, 262, 26¢, 26¢
19, 228, 234, 2€9, 263, 267, 259, 262, 259, 260
32, 232, 237, 27¢, 264, 264, 259, 262, 26€, 2€0
34, 232, 235, 27¢, 2€4, 26%, 259, 26Z, 259, 261
27, 231, 238, 267, 263, 264, 259, 262, 258, 2€0
34, 235, 240, 26€, 263, 262, 259, 261, 258, 260
1€, 228, 227, 265, 263, 263, 260, 261, 259, 26¢
15, 227, 234, 265, 265, 264, 259, 262, 259, 2€1
32, 233, 272, 263, 264, 262, 260, 2€¢, 258, 2€6¢

BTN SN, IV S, N NN P, PN I, S TN TN, SN
Nt e N NP ot e et Saeal? et i s e Mo e e

124




Class 3

( 28, 119, 229, 233, 267, 265, 265, 263, 261, 261
( =29, 11e, 253, 232, 268, 265, 264, 264, 268, 263
( 29, 122, 231, 232, 269, 265, 263, 264, 260, 262
( 31, 123, 232, 233, 273, 265, 263, 264, 261, 262
( 35, 124, 232, 233, 271, 266, 263, 264, 262, 2€1
( 4@, 225, 222, 233, 271, 265, 263, 263, 264, 258
( 41, 227, 231, 234, 269, 26€, 264, 263, 263, 260
( 4@, 226, 233, 277, 239, 266, 264, 260, 264, 262
( 21, 118, 284, 233, 269, 265, 261, 266, ?6¢, 262
( 23, 122, 227, 234, 267, 265, 261, 266, 259, 262
( 19, 117, 226, 225, 266, 265, 261, 266, 259, 262
( 1%, 104, 226, 236, 265, 265, 264, 265, 259, 26%
( 4, 92, 227, 236, 266, 264, 266, 263, 261, 262
( 1, 86, 226, 229, 266, 264, 266, 261, 263, 260
( 1, 81, 227, 273, 264, 265, 267, PEB, 262, 262
( 191, 7e, 229, 271, 264, 26€, 266, 268, 262, 2€1

Nt Nt el e o vkl S et il o et el et et s

2. PEASE 2 : 421 SAMPLE TEST
Read each class mean as a column vector.

class
1 2 Z

component

a 121.479 49,766 34,59€
b 133.914 188.723 185.249
c 240.907 242,022 239.63¢
d 2€6.378 263 .657 245,575
e 264.9€4 264 .482 2€4.4590
4 263.121 2€63.35@ 2€4.849 ;
g 261.736 261.562 2€3.959
h 262.564 260 .693 261.€85
i 2€C¢ .586 260 .€58 2€1.3284
J 259.650 262.295 261.555

125




B.

REPERENCE POINT TEST

REFERENCE POINT

1.

9899,

-9999,

-5¢ee,

-1e00,

- 500,

e,

750,

3002,

7¢ee,

'30@@.

48 SAMPLE TEST
a. Iteration 1
8969, 9999, 9999, 9999,
9999, 9999, 9999, 9999,
-9999, =-9999, -9999, -9999,
9999, =-9999, =-9999, =-99899,
-9989, -9599, -9999, -9999,
-9999, -9999, -9999, -9999,
-9999, =-9999, =-9999, =9999,
-9999, -9999, -8999, -9999,
-8999, -9999, -9999, =-9999,
-9999, -9999, -9999, =-9999,
-8999, -9999, -9899, =-9999,
-9899, -5999, -9999, -9999,
-9999, =-9999, -9999, -9999,
-9999, -9999, -9989, -9999,
-9999, =-9999, -9899, -9989,
-9999, -9999, =-9899, -9999,
-9999, =-9999, -99938, -9999,
-9999, -9999, -9999, =-9999,

b. ITERATION 2

-9999, -9999, -9999, =-9999,

126

9995

-9999

-9999

-999%

-9999

-9999

-9899

-9999

~9699

1.592@25

1.5512¢2

1.034772

¢ .995774

1.214196

1.33559¢8

1.e78£92

1.269396

1.833402

P




-2000,

-1520,

-1 299 [

-5¢re¢,

-3320,

-35¢@,

-2700,

-39922,

-41¢0,

-9999, -$999, -9999, -9999,

-9999, =-9999, =-9999, =-9999,
-9999, =-9989, -9899, =-9999,
-9969, -9999, -9999, -9999,
-9999, =-9999, =-9999, -9999,
-9999, -9989, -9999, -9996,
-9999, -9999, -9999, -9999,
-9999, =9999, =-9999, =-9999,
-5999, -9999, =-9999, -9999,
-9998, -9999, -9999, -9999,
-9999, =-9999, =-9899, -9999,

c. ITSRATION 3

-9999, -9999, =-9999, =-9999,
-9999, -9999, -9999, -99899,
-9999, -9999, =-9999, -9999,
-5999, -9999, -9999, -9999,
-999g9, -9999, -9999, -9999,
-9999, -9999, -9999, -9999,
-9999, =-9999, -9999, =9999,
-9999, -9999, -9989, -39999,
-9999, -9999, -9999, -9989,
-9999, =-9999, =-9999, =-9999,
-9999, =-9999, -9999, -9999,
-9999, -9999, -9999, -9999,

127

-9999

-9999

-9899

-999¢

-999§

-8899

-5999

~989S

-9995

-9999

-9999

-9999

@.974786

@ .978¢93

@.982422

2.990013

¢ .598€87

1.00518€

1.034770

€ .9784€9

2.981821

¢ .985854

2.991239

2.997118

b e e e




\
L
:
3
3

TR T

-44¢0,

-96899,

-9999,

-9999,

-9999,

=-9999,

-3229,

-9999,

-3ee9,

-3203,

~3eeo,

-3e00,

-9999, -9999, -9999, -9999,
-9999, -9999, -9999, -9999,

d. ITERATION 4

-£e00, -9999, -9999, -9999,
-9999, -9999, -9999, -9999,

-1000, =-9999, -9999, -9999,
-9999, -9999, -9899, -9999,

- 522, -9999, -9999, -9999,
-9999, -9999, =-9999, =-9999,

@, -9999, -9995, -9899,
-9868, -9999, -9999, =-9999,

75@¢, =-9999, =-9999, -999¢,
-9999, -9999, -9989, -9999,

3222, -9999, -9999, -5999,

-9999 )

-9999 )

~9999 )

-9999 )

-9999 )

-9999 )

-9999, -9999, -9999, -9999, -9999 )

7902, -9599, -9999, -99¢9,
-9999, -9999, -9999, -9999,

-5090, -9999, -9999, -9999,
-9999, -9999, -9999, -9999,

-1003, -9999, -9999, -9999,
-9999, -9999, -9999, -9999,

- sg@, -9959, -9999, -9999,
-9999, -9999, -9999, -9999,

@, -9999, -9999, -9989,
-9999, -9999, -9999, -9999,
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~9909 )

-9996 )

-99g99 )

-9999 )

-93999 )

1.0e7879

2.583€54

7 .€89868

9.428¢€20

11.79372%7

17 .107452

73 .984070

50.773372

¢.7549@2

1.228729

1.515115

1.952134




750, -9999, -9999, -9999,
-9999, -9999, -9899, -9999,
3¢ge, -9999, =-9999, -9999,
-9999, -9999, -9999, =-9999,
72920, -9999, -9999, -9999,
-2999, -9999, =-9999, -9999,

e. ITERATION 5

-95¢@, -9999, -9999, =-9999,
-9999, -9999, -39899, -9999,

-9922, -9g8¢, -9999, -~9999,

-9999, -9999, -9999, -9999,
-85¢@, -9999, -9999, ~-39999,
-9999, -9999, -9999, -9999,
-/gee, -9999, -9999, =-9999,
-9999, -9¢99, -9999, =-S5999,
-7589, -9999, -9989, -9999,
-9999, =-9999, =9999, -9999,
-7e0e, -9999, -9999, -9999,
-9099, -9999, -9989, =-9999,
-65¢00, -9999, -9999, -9999,
-9999, -9999, -9999, -9999,
-6008, -9999, -999%, -9999,
-9999, -9999, -9999, =-9999,
-5¢¢9, -9999, -9999, -9999,

3.29€567

24 .588181

32.357605

2 .949€82

0.928911

@.001211

?.87€256

€.851815

0.828€41

¢.826297

@.725749




-9899, -9999, -9999, -9999, -9999 ) ?.768541
( -32000, -4509, -9999, -9999, -9999

-9999, -9999, -9999, -9999, -999S ) ?.747745
( -3000, -4000, -9599, -9999, -9999,
-9999, -9999, =-9999, -9999, =-9599 ) 0.747534

| f. ITERATION 6

( -3eoe, -36e20, -9999, -9999, -9999,
-9999, -9999, -9999, -$999, -9999 ) @.78515¢

( -3229, -2220, -9999, -9999, -9999,
-9999, -9999, =-9999, -9999, -9959 ) 2 .77282€

. ( -3¢ee, -28¢7, -9999, -9999, -9999,
-9999, =-9998, -9999, -9999, =-999S ) 2.821493

( -3000, -2400, -9999, -8999, -9999,
-9999, -9999, -9999, -9999, -9393 ) P .847168

( -3202, -2208, -999%, -9999, -9999,

-Q999, -9999, -9999, -9999, -9999 ) 2 .872€74
( -3eee, -18¢0, -9999, -9999, -9999,

-9999, -9999, -9999, -9999, -9999 ) 2.956538
( -3e02, -14090, -9999, -9999, -9999,

-9999, -9999, ~-9999, -9999, -9999 ) 1.¢69283

g. ITERATION 7
( -9999, -9999, -7¢2¢, -9999, -3999, g
-9999, -9999, -9999, -9999, -9999 ) 1.733785
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( -9999, -9999, -3902, -9999, -9999,

-9999, -9999, =-9999, -9999, -9999 ) 2.e6€772
( -9999, -9999, - 1, -9999, -9998,
-9999, -9999, -9999, =-9999, -9999 ) 2.412266

( -9999, -9999, 4¢g@, -9999, -9999,
-9999, -9999, -9999, -9999, -9999 ) 3.24E544
( -9999, -9999, 8¢ed, -9999, -9999,

-9999, -9999, -9999, -9999, -9999 ) 2.9929@¢9
( -32928, -9999, -702¢, -9999, -9999,

-0999, -5999, -9999, -9999, -9999 ) 1.071215
( -3¢e¢, -9999, -30¢¢, -9999, -9999,

-9999, -9999, -9989, -9999, -9999 ) 1.261718
( -3¢e0o, -9999, - 1, -9999, -9999,
-9599, -99¢9, -9999, -9999, =-9999 ) 1.467827

( -3000, -9999, 422@, -9999, -9999,

~-9999, =-9999, -9999, -9999, -9999 ) 1.874722
( -3eee, -4500, 8eeZ, -9999, -9999,

-9999, -9999, -9999, -9999, -9999 ) 2.517179
( -300e, -4500, -700¢, -9999, -9999,

-9999, -9999, -9999, -9999, -5999 ) ?.815¢99
( -2022, -4522, -3202, -9999, -9999,

-9999, -9999, -9999, -9999, -9999 ) 1.022€57
( -3¢ee, -4502, - 1, -9999, -99989,
-9999, -9999, -9999, -9999, -9999 ) 1.346€19

( -3000, -4500, 4000, -9999, -9599,
-9699, -9999, -9999, -9999, -9999 ) 2.233199




( -2e20¢, -4500, 8022, -9999, =-9999,

-9999, -9999, =-9999, =-9999, -9999 ) 4.224475

h. ITTRATION 8

( -2000, -4500, -9999, -7000, -9999,

-9999, -9999, -9999, =-9999, -9999 ) 1.772202
( -3002, -4509, -9999, -5200, -9999,

-9999, -9999, -9999, -9999, -9999 ) 1.954€75
( -3eee, -4%00, -9999, -3ee?, -9999,

-9999, -9999, ~-g99%, -9999, =-9999 ) 2.171€€5
( -3¢00, -450@¢, -9999, -1¢¢@, -9999,

-9999, -9999, -9999, -9999, -9999 ) 2.420296
( -3022, -4528, -9s89, - 1, -9599,
-9999, -9999, -9999, -9999, -9999 ) 2.882221
( -200e, -4500, -995S5, 2¢0¢, -9999,
-9999, -9999, -9999, -9999, -9999 ) 2.937319
( -2eee, -4500, -9999, 408008, -9999,
-9999, -9999, -9999, -9999, -9999 ) 3.3745¢5
( -3209, -4509, -9999, €008, -9999, ,
-0999, -9999, -9999, -9999, -9999 ) 3.919746 ;
( -3¢ee, -450@8, -9999, 8¢00, -9999, :
-9999, -9999, -9999, -9999, -999¢ ) 4.616714 ;
( -3e0e, -4500, -9999, -920¢, -9999, g
-9999, -9999, -9999, -9999, -9999 ) 1.85219¢ 5

( -3000, -4500, -9999, -7002, -9999, !
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-3gee,

-3000,

-3222,

-EZZZ'

-2pee,

-3222,

-3eoe,

-9999,

-9999,

-9999,

-9999,

-9999, -9899, -$998, -9999,

-4£¢e2, -9999, -500¢, -9999,
-9999, -9999, =-8999, -9989,

-4500, -9999, -3@8¢, -9999,
-9999, -99989, -3999, -8999,

-4529, -9999, -1002, -9999,
-9999, -9999, -9999, -9999,

-45¢¢, -9869, - 1, -9999,
-9999, -9599, -9999, -9999,
-4500, -9999, 2080, -9999,

-9899, -9999, -9999, -99899,
-4522, -9999, 4209, -9999,

-9999, -9999, -9999, -9999,
-4£@0, -9958, 8@¢e0, -9999,

-9999, -9999, =-2999, -9998,

1. ITERATICN 9

-9699, -9999, -9999, -9999,
-0¢¢¢, -9999, -9999, -9999,
-39999, -9999, -9999, -9999,
-7228, -9999, -9999, -9999,
-9999, =-9999, -9999, -9999,
-5¢902, -9989, -9999, -9999,
-9999, -9999, -9999, -9999,
-3ees, -9999, =-9999, -99389,
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-9999

-9969

-9989

-9699

-9999

=989

-9969

-9989

-9999

-8999

-3999

-9999

1.553089

1.554962

1.556€23

1.5599€1

1.5€168¢€

1.8€4777

1.8€9€91

1.58013¢8

1.543766

1.526525

1.809349

1.402971




T S P

-9999,

-9999,

-99s9,

-9999,

-9999,

-9999,

-9899,

-9999,

-9999,

-9999,

-9999,

-9999,

-9999,

-9999, =999, -9999, =-9999,
-1200, -9999, -9899, -9999,
-9999, -9999, =-9999, =-9999,
- 1, -9899, -9999, -9999,
-89¢9, -999%, -9999, -99S9,
2000, -9999, -9999, -9999,
-3989, -9999, =-9899, ~9999,
4329, -9999, -9859, -9999,
-99¢9, -9¢99, -9999, -9999,
€eed, -9999, -9999, -9999,
-9999, -9999, -9999, -9999,
eege, -9999, -9999, =-9999,
-99¢9, -9599, =-9999, =-9999,
-9999, -9093, -9999, -9999,
-9999, =-99¢9, =-9999, -9999,
-9999, -7¢e8, -3983, -5999,
-9999, -99%99, -9999, -9999,
-399899, -t@ge@e¢, -99939, -9999,
-9899, -9999, -99393, -9999,
-9999, -30900, -9999, -9999,
-9999, =-9999, -9999, -9999,
-9999, -1ee¢e, -9999, -9999,
-9999, -9998, -9989, -9999,
-90999, - 1, -9999, =-9999,
-9999, -9999, =-9999, =-9999,
-5899, 2009, -9999, -9999,
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-999¢

-9989

-999%

-999¢

-9998

-9999

-9999

-9996

-9999

-9999

-9999

-9999

-99899

1.477169

1.4€872¢0

1.45202¢0

1.437€54

1.422296

1.544296

1.827735

1.511529

1.495849

1.481789

1.474133

1.459345




-9989, -9899, -9998, -9999,
-3999, 429, -9899, -9989, 1.448719

-9999, -9999, -9999, -9999,

-0999, 6@ee, -9999, -9999, -9999 ) 1.431514
( -9999, -9999, -9999, -9999, -9999,

-9999, £229, -9999, -999%, -99%9 ) 1.418290
( -9999, -9999, -9999, -9999, -9999,

-9999, -9999, -9€¢3, -9599, -9999 ) 1 .E4Z623
( -9998, -9999, -9999, -9999, -9999,

-9999, -9999, -7@¢00, -9999, -9999 ) 1.520831
( -9999, -9999, -3999, -9999, -99%9,

-9999, -99¢9, -59204, -9999, -9999 ) 1.4€47€61

J. ITERATION 10

( -9899, -9999, -9999, -9999, -9599,

-9999, -9999, - 1, -9999, -9999 ) 1.477756
( -9989, -9599, -9999, -9999, -9999,

-9999, =-9999, 2099, -9999, -9999 ) 1.464212
( -9999, -9999, -9999, -9999, -9999,

-9999, -9999, 4000, -9999, -9999 ) 1.450755
( -9999, -9999, -999¢, =-9999, -9999,

-9999, -9999, 6€08, -9999, -9999 ) 1.437445
( -9993, -9999, -9¢99, -9999, -9993,

-999g9, ~-9999, 8993, -9998, -9999 ) 1.424325
( -9999, -9999, -9999, =-9999, -9999,
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-9999,
-9959,
-9999,
-9999,
-9999,
-9999,
-999a,
-9599,
-9999,
-9999,
-9999,

-9599,

-9999, =-9999, ~9999, =-9000,
-99998, -9999, -99¢9, -5999,

-9999, =-9999, -9999, -7¢00,
-9999, -9689, -9889, -9999,
-38999, -9999, -9999, -5000,
-9989, =-9999, -9999, -9999,
-9999, -9999, -9999, -leea,
-9899, -99699, =-9999, -9999,
-9999, -9999, -9999, -1¢¢@,
-89%3, -9999, -9999, -9999,
-9999, =-9999, =-9999, - 1,
-9999, -9999, =-9999, -39999,
-9999, -8899, -3999, 2029,
-9999, =999, -989¢9, -99849,
-9999, -9999, -9993, 40cee,
-9999, -9985, -9999, =-9999,
-0999, -9999, =-9999, 6E¢oe¢,
-9999, -9939, -99939, -9999,
-99989, -5899, -99938, 8299,
-9998, -9999, =-9999, -9999,
-9999, -9999, -9989, -9989,
-9998, -9998, -9999, -9999,
-9969, -9999, -9999, -9999,
-9989, -9§99, -9899, -9939,
-9989, -9999, -9999, -9999,
-9999, =-9699, =-9999, -99899,
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-9999

-9999

-9999

-9999

-9999

-9999

-9995

-9999

-99899

-9969

-9¢¢¢

-70e0

-50092

1.545251

1.532997

1.5201€1

1.507895

1.49523%7

1.480€53

1.4782€5

1.466219

1.485642

1.444127

1.84793¢

1.53€€48

1.531¢222




-3899,

-99389,

-9999,

-3g899,

-9999,

-3000,

-3202,

‘3@@9.

~3208¢,

-3222,

-9999, -9999, -9999, -9999, -300¢
-9999, -9999, -9999, -9999,

-9999, -9999, -5999, -9999, ~1002
-9999, -9999, -9999, -9999,

-9939, -9999, -9999, -9999, - 1
-9999, ~-9999, -9999, -9999,

-9999, -9999, ~9999, -9999, 2000
-9999, -9999, -9999, -9999, -9999,

-9999, -9999, -9999, -9999, 4092
-9999, -9999, -9999, -9999, -9998,

-9999, -9999, -9999, -9999, 6¢20
-9999, ~9959, -9999, -9959, -9999,

-0999, -9999, -9999, -9999, 82¢0O

k. ITERATION 11

-4500, -9999, -9999, -9999,
99g9,
-4502, -9999, -9999, -9999,

9999, 9999, 9999, 9999

-9999, ~9999, -9999, -9999, -9999
-4500, -79¢¢, -9999, -9999,

-9999, -8999, -9999, -9999, -9999
-4S00, -75€0, -9999, -9999,

-9999, -9999, -8893, -9999, -999¢5
-4500, -89@¢, -9599, -9999,

-9999, =9999, =~9999, -9999, =-9909
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1.8523348

1.514919

1.510€91

1.502452

1.494€42

1.4869e7

1.4020084

0.4422€9

2.747745

2.815092

7 .80¢422

P.7863249




( -3eee, -45e0, -7000, -9999, -9999,
9998, 9999, 9999, 9999, 9999 ) @9.452415

( -300e, -45g0, -700¢, -9999, -9999,
99999, 99999, 99999, 99999, 99999 ) ©.189¢89

2. 421 SAMPLE TEST
a. ITERATION 1
( -3200, -4508, -72008, -9999, -999g,
99999, 99999, 99999, 99999, 99999 ) 1.878162
( -3000. ~45¢8@, -7¢2¢,-99999,-99999,
99999, 99999, 99999, 99999, 99999 ) 1.312979
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APPENDIX G TEST DATA FROM CASE STUDY 7

A. SAMPLE DATA

The class means only are provided. Read each mean as a

columrn vector.

class

vector

component 1 2 3

a 121.479 49,766 34,96
b 133.914 188.723 185.349
c 240.907 242.222 239.€30
d 266.378 263.657 245,575
e 264.9€4 2€4,482 264,459
f 263.121 263.35¢ 264.849
g 261,736 2€1.562 263.959
h 2€0.564 2€3.693 261.685
i 262.58€ 2€0.058 261.384
J 259.6¢£¢ 260.295 261,555
k 259.635 259.328 2€2.370
1 258.83€ 259.073 259.870
m 258.828 258.832 259.609
n 258.621 25&, €06 259,301
) 258.4326 288.423 259.185
P 288.378 258.233 259.214
q 258.122 258.306 259.221
r 258.10¢ 257.963 258 .507
S 257.878 258,044 258.322
t 257.83€ 257.613 258.178
u 257.7€4 257.788 258.164
v 257.678 257,576 258.109
w 257.607 257,628 258.221
x 257.421 287,343 257.8¢1
y 257.414 257,265 257.829
z 257.343 257.292 257,788
* 257.135 287.255 257,774
a 257.2¢¢ 257.219 257.651
# 257.128 257.295 257,637
$ 257.107 287.1¢2 257.479
% 257.078 257.251 257.418
5 257.359 257.295 257.493
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B. REFERENCE POINT TLATA
Read each reference point as a column vector. The value

of a vector component across a row remaia constant unless

ipdicated otherwise. The last component value charnee to
occur remains in effect until modified. The resulting
(I ) is shown below the correspondirng vector.
1. ITERATION 1

a -3@66 ee s e 0 oo e e e
b -4502 ) P e o0 e e
c -7@00 e e e s 0 X e e s
d -9999 ca o s e e Py s e e
e ~-9999 cee o cee e
f 99999 cee cee cee e
g ggggg o s LI LN ] ) o e »
h 99999 ® 4 e * & @ LN BN J * " e
i 9999 99999 cas 9999 o
J 9999 99999 s 9999 coe
k 9999 -9999 99999 9999 . 99999
1 9999 -9999 99999 9999 99999
m 9999 e cas 98999 -9869
n 99989 e s oee ~99969
] 99389 cee coe ces ~99899
P 9999 ce e cae e -99999
q 99989 e e 99998 99999
r 9999 e e 99999 96999
S 0999 e ces -9999 99999
t 9999 . ese -9999 99999
u 9999 e ces -9999 99999
v 9999 e v e e e s -gggg _99999
] 8959 . cee -9999 -99999
x 9999 e P -9999 ~-99999
y 9999 cee e -9999 99999
z 9999 e .o -9999 99999
* 9999 ene cee -9999 99999
@ 9999 ev e s s —gggg 99999
# gggg s s e o 00 -gggg 99999
$ 9999 eee e -9999 -99999
4 9999 e ces -9999 ~99999
& 9999 oo e s e e ’gggg -99999

1.6835723 1.844750 3.736396 1.8964€5 54.177185
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2. ITERATION 2

'32@@ ce e e e Y
-4506 e e s s s
-70gg so e e e )
-9999 ee e s e ev e
-9999 s e e LI e s e
ggggg LI IR ] e ® 8 LI N
99989 e PN cue
99999 es e oo e
99999 LK 2N 2 [ 2N ] e 0 @
99999 s e oo
-€6209 -29009 3029 72020
-gggg LN ) LI . o0
-gggg cas e e e oo
-9999 Y e oo )
-9999 * e O > & 0 e o0
-9999 v e e oo e e e
-9999 oo e e o R
-9999 e .o cee
-9999 se e e e e v
‘gggg ce e LY L)
-9999 e e e e e 0 . 0 0
-9999 e e e e e
-gggg es e cee Y
=-9999 eee e .o
-9999 L B J e & @ e o 0
-9999 es e LY c o
-9999 e coe e
-9999 . o .o
-9999 XKl e s e s oo
-9999 e o . e @ o oo
-9999 LY oo e s o0
-gggg oo e 0 e 00

ARV D AN YN ECS VOO T RN ITRNRODAODTN

1.828800 1.748404 1.877700 1.8€2315
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PR VED AN N ECCSAVNIOT O THENCLHITRODAODTE

3. ITERATION 3

-3000
-450¢
-7000
-8999
-9999
99999
99999
99999
99999
99999
-9999
-€202
-9999
-9999
-9998
-9999
-9996
~-9999
-9999
-9899
-8999
=9899
-9999
-9999
-9999
-9969
-9899
-9999
-9999
-9999
-9999
-9899

1.823865

22200

1.772686

3200

1.854467
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2000

1,785567

s 00
LI )
LI
e e o
LI
L3 I
LY
® 0 e
oo e
s e e

-9999
-€000

LI ]
s 00
e e 0
LY
LI Y
e e e
* e »
LI IR
LAY
* e o
LI Y
e o
LI )
.0 e
L)
LI Y
e e
LI )

1.821434




4. ITERATION 4

-3000 e
-4500

-7000¢ o
-9999 s
-9999 ..
99999

99999 o
99999 e
99999

99999 o
-9999 o
-9999 .
-2000 o
-9999 -
-9999 .??ﬂg
-9999 e
-9999 ..
-9999 ..
-9999 .
-9999 ..
-9999 ...
-gggg )
-9599 ..
-9999 ...
-9999 ..
-9599 e
—9999 s e 0
-9999 ..
-9993 ...
-9999 et
-9999 e

a
b
c
d
e
£
g
h
1
J
k
1
m
n
0
P
q
r
s
t
u
v
w
x
y
z
-3
@
#
$
3
&

1.763098 1.882494 1.795417 1.822187 1.754014




5. ITERATION 5

-sagg * e 0 * o O * & 0 o e o
-45@@ DY PRI s e IR
-7@@@ s s L) v e e e
-gggg ee e e e s o s o
‘gggg ) oo e oo e e e
99999 PN oee oo T e
99999 coe oo oo cos
99999 es e e oo Y
99999 LI 2N 2 . s o ” 90 o8 ®
98999 .o v e oo
-9999 LI ] LRI ¢ o0 LI Y
-9999 ce® e e s e e
-9999 ee e P e e S
3089 7000 -9999 oo s
-9999 =9999 -£000 -2000 2eee
-9999 oo .es e .o
‘9999 eo e o o0 ) s e
-9999 o e e .o
~-9999 . .o .o .o
-9999 ce s LAY oo o e
—9999 o0 O * e 0 e s @ L 2
-9999 ¢ e O * e 0 o & & . &0
-9999 as e se o e e s e
-9999 eee e ces e
-gggg K e e n e e s
-9999 es s ) e o0 e
—9999 es e L) e 0 s
-9999 e e .o cee
-9999 K c o0 ce e s 00
-gggg .6 ® o 9 LI &
-9899 e vee oo .o
-gggg s s e o oo c 00 e e e

PRV D AN M EAEL AVIOTODN I IR DD AD O M

1.816326 1.762993 1.802553 1.762321 1.86822¢




P————-—-——————'——————j

6. ITERATION €

-3@@@ X es e o0 )
-4502 so e oo oo s e e 1
‘7@@0 o0 e ° e o0 s0 e
-9999 LN N ] o a L ] LK BN 3
-9999 ce e e e s o0 ce e
99999 coe cee oo PN
99999 e e o ® & 9 o e e @ o
99999 .o - o .o
99999 X LI e ce e
99999 LI N ] L e o0 LN )
-9999 ee e LI v * 0 s
-9999 e LIS e s e
-93999 oo oo ove see
-9999 ces 0o eoe e
7009 -9699 e e ces
-9999 -6000 ~209¢@ 3000 7200
-9999 oo .o .o .
-9999 R LI Y ) co
-9999 L R ] LI ) L3N ) ® o
-9999 e e oo o0 .o
-9999 e e LTINS e 00 o s e
=9999 ce e s e e ce e
-9999 o e .o .
-9999 e “ces e e
-9999 o0 & L Y LK) * o @
-gggg LN B ) *® & » o & » * o0
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